福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ aとbを正の整数とし、f(x)=ax^2-bx+4\ とおく。2次方程式f(x)=0は\\
異なる2つの実数解をもつとする。\\
(\textrm{a})2次方程式f(x)=0の2つの解がともに整数であるとき\\
\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.  
または 
\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\
\\
である。\\
\\
(\textrm{b})b=7とする。2次方程式f(x)=0の2つの解のうち一方が整数であるとき、\\
a=\boxed{\ \ エ\ \ }であり、f(x)=0の2つの解は\\
\\
x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\\
\\
である。
\end{eqnarray}

2021明治大学理工学部過去問
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ aとbを正の整数とし、f(x)=ax^2-bx+4\ とおく。2次方程式f(x)=0は\\
異なる2つの実数解をもつとする。\\
(\textrm{a})2次方程式f(x)=0の2つの解がともに整数であるとき\\
\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.  
または 
\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\
\\
である。\\
\\
(\textrm{b})b=7とする。2次方程式f(x)=0の2つの解のうち一方が整数であるとき、\\
a=\boxed{\ \ エ\ \ }であり、f(x)=0の2つの解は\\
\\
x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\\
\\
である。
\end{eqnarray}

2021明治大学理工学部過去問
投稿日:2021.09.26

<関連動画>

自宅で勉強してて分からない問題に当たった時の解決法 #shorts #勉強法 #勉強

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
自宅で勉強してて分からない問題に当たった時の解決法に関して解説していきます.
この動画を見る 

福田のわかった数学〜高校1年生015〜絶対不等式(3)

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対不等式(3)
$0 \leqq x \leqq 4$ の全ての$x$について
$x^2-2ax+2a+3 \gt 0$
が成り立つような$a$の値の範囲は?
この動画を見る 

【数Ⅰ】図形と計量:三角比の表③

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin0°, sin90°, sin180°の値を求めよ。
・cos0°, cos90°, cos180°の値を求めよ。
・tan0°, tan90°, tan180°の値を求めよ。
この動画を見る 

【数検2級】数学検定2級2次:問題1

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次関数とグラフ#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.(選択)
aを定数とします。2次関数$y=2x^3-4ax+1(0\leqq x \leqq 3)$について、次の問いに答えなさい。
(1)$a=2$のとき、yのとり得る値の範囲を求めなさい。
(2)$y$のとり得る値の範囲が$1\leqq y\leqq 25$であるとき、aの値を求めなさい。
この動画を見る 

京都大 合成関数 不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ

出典:2013年京都大学 過去問
この動画を見る 
PAGE TOP