福田の数学〜慶應義塾大学2021年看護医療学部第4問〜空間ベクトルと三角形の面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年看護医療学部第4問〜空間ベクトルと三角形の面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.10

<関連動画>

【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
この動画を見る 

福田の数学〜九州大学2022年理系第1問〜空間における折れ線の最小〜平面の方程式を勉強するよ!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 座標空間内の5点\hspace{220pt}\\
O(0,0,0), A(1,1,0), B(2,1,2), P(4,0,-1), Q(4,0,5)\\
を考える。3点O,A,Bを通る平面を\alphaとし、\overrightarrow{ a }=\overrightarrow{ OA }, \overrightarrow{ b }=\overrightarrow{ OB }とおく。\\
以下の問いに答えよ。\\
(1)ベクトル\overrightarrow{ a }, \overrightarrow{ b }の両方に垂直であり、x成分が正であるような、\\
大きさが1のベクトル\overrightarrow{ n }を求めよ。\\
(2)平面\alphaに関して点Pと対称な点P'の座標を求めよ。\\
(3)点Rが平面\alpha上を動くとき、|\overrightarrow{ PR }|+|\overrightarrow{ RQ }|が最小となるような\\
点Rの座標を求めよ。
\end{eqnarray}

2022九州大学理系過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(r$\cos\theta$,r$\sin\theta$,0),Q($\frac{1}{r}\cos\theta$,$\frac{1}{r}\sin\theta$,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがr$\cos\theta$=$\frac{1}{2}$を満たしながら変化するとき、内積$\overrightarrow{OG}・\overrightarrow{OR}$の最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

数学「大学入試良問集」【14−14四面体の体積•平面と垂直な直線】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
空間内に4点$A(0,0,0),B(2,1,1),C(-2,2,-4),D(1,2,-4)$がある。
(1)
$\angle BAC=\theta$とおくとき、$\cos\theta$の値と$\triangle ABC$の面積を求めよ。

(2)
$\overrightarrow{ AB }$と$\overrightarrow{ AC }$の両方に垂直なベクトルを1つ求めよ。

(3)
点$D$から、3点$A,B,C$を含む平面に垂直な直線を引き、その交点を$E$とするとき、線分$DE$の長さを求めよ。

(4)
四面体$ABCD$の体積を求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑳空間における平面上の点を係数から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 
PAGE TOP