福田の数学〜慶應義塾大学2021年看護医療学部第3問〜散布図と箱ひげ図 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年看護医療学部第3問〜散布図と箱ひげ図

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} ある高校の生徒30人に対し、50m走のタイムを2回計測した。\\
左図(※動画参照)は1回目の計測結果を横軸に2回目の計測結果\\
を縦軸に取った散布図である。\\
(1)次の(\textrm{A})から(\textrm{F})のうち、1回目の計測結果の箱ひげ図\\
として適当なものは\boxed{\ \ ネ\ \ }であり、2回目の計測結果の箱ひげ図として\\
適当なものは\boxed{\ \ ノ\ \ }である。\\
(2)次の(\textrm{G})から(\textrm{L})のうち、1回目と2回目の計測結果の合計の\\
箱ひげ図として適切なものは\boxed{\ \ ハ\ \ }である。\\
(3)遅れてやってきた31人目の生徒の50m走のタイムを2回計測した\\
結果、1回目は20.0(秒)、2回目は10.0(秒)であった。各生徒の2回の\\
計測結果の合計を考え、最初の30人の生徒の平均値を\bar{ x_{31} },中央値を\\
m_{31}とする。\bar{ x_{30} }=17.0であることに注意すると、\\
\bar{ x_{31} }-\bar{ x_{30} }=\boxed{\ \ ヒ\ \ }である。一方、\\
m_{31}-m_{30}=\boxed{\ \ フ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} ある高校の生徒30人に対し、50m走のタイムを2回計測した。\\
左図(※動画参照)は1回目の計測結果を横軸に2回目の計測結果\\
を縦軸に取った散布図である。\\
(1)次の(\textrm{A})から(\textrm{F})のうち、1回目の計測結果の箱ひげ図\\
として適当なものは\boxed{\ \ ネ\ \ }であり、2回目の計測結果の箱ひげ図として\\
適当なものは\boxed{\ \ ノ\ \ }である。\\
(2)次の(\textrm{G})から(\textrm{L})のうち、1回目と2回目の計測結果の合計の\\
箱ひげ図として適切なものは\boxed{\ \ ハ\ \ }である。\\
(3)遅れてやってきた31人目の生徒の50m走のタイムを2回計測した\\
結果、1回目は20.0(秒)、2回目は10.0(秒)であった。各生徒の2回の\\
計測結果の合計を考え、最初の30人の生徒の平均値を\bar{ x_{31} },中央値を\\
m_{31}とする。\bar{ x_{30} }=17.0であることに注意すると、\\
\bar{ x_{31} }-\bar{ x_{30} }=\boxed{\ \ ヒ\ \ }である。一方、\\
m_{31}-m_{30}=\boxed{\ \ フ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.09

<関連動画>

スッキリだそう

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=2$
$a^3+b^3+c^3=3$
$a^4+b^4+c^4=\Box$
$a^5*b^5+c^5=\Box$
$\Box$を求めよ.
この動画を見る 

ガウス記号の入った二次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^2-7[x] +6=0$
この動画を見る 

4の累乗の和で平方数を作れ

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,n$は自然数である.
$4^a+4^b+4^c=n^2$
$10\lt a\lt b\lt c$を満たす$(a,b,c)$を1組与えよ.
この動画を見る 

福田のわかった数学〜高校1年生031〜否定分の作り方(1)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 否定分の作り方(1)\\
次の命題を否定せよ。\\
砂糖は甘い。
\end{eqnarray}
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 
PAGE TOP