福田のわかった数学〜高校3年生理系037〜極限(37)関数の極限、色々な極限(7) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系037〜極限(37)関数の極限、色々な極限(7)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(7)\\
\lim_{n \to \infty}n^2(\cos\frac{1}{n+1}-\cos\frac{1}{2n})を求めよ。
\end{eqnarray}
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(7)\\
\lim_{n \to \infty}n^2(\cos\frac{1}{n+1}-\cos\frac{1}{2n})を求めよ。
\end{eqnarray}
投稿日:2021.06.22

<関連動画>

福田のわかった数学〜高校3年生理系023〜極限(23)関数の極限、三角関数の極限(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(3)
$\lim_{\theta \to 0}\displaystyle \frac{\tan\theta-\sin\theta}{\theta^3}$ を求めよ。
この動画を見る 

長岡技術科大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る 

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

【高校数学】数Ⅲ:関数:逆関数と合成関数:逆関数の求め方【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の逆関数を求めよ。
$\displaystyle y=\frac{x-2}{3x+1}$
この動画を見る 

福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ f(x)=\log(x+1)+1とする。以下の問いに答えよ。\\
(1)方程式f(x)=xは、x \gt 0の範囲でただ1つの解を\\
もつことを示せ。\\
(2)(1)の解を\alphaとする。実数xが0 \lt x \lt \alphaを満たすならば、\\
次の不等式が成り立つことを示せ。\\
0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)\\
(3)数列\left\{x_n\right\}を\\
x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)\\
で定める。このとき、全ての自然数nに対して\\
\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)\\
が成り立つことを示せ。\\
(4)(3)の数列\left\{x_n\right\}について、\lim_{n \to \infty}x_n=\alphaを示せ。
\end{eqnarray}

2022大阪大学理系過去問
この動画を見る 
PAGE TOP