福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
投稿日:2021.06.20

<関連動画>

【数B】数列:N次式型の漸化式! a1=1,a[n+1]=2a[n]-n²+2nで定められる数列{an}の一般項を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=2a_n-n²+2n$で定められる数列${an}$の一般項を求めよ。
この動画を見る 

福田の一夜漬け数学〜確率漸化式(4)〜名古屋市立大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。

(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。

(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。

(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。

(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
この動画を見る 

福田の数学〜部分和と漸化式の扱い方〜慶應義塾大学2023年経済学部第2問〜部分和と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\{a_{n}\}$に対して$\displaystyle \sum_{k=1}^n a_k(n=1,2,3,・・・)$とし、さらに$S_0=0$と定める。$\{a_n\}$は$S_n=\dfrac{1}{4}-\dfrac{1}{2}(n+3)a_{n+1}$(n=0,1,2,・・・)を満たすとする。
(1)$a_1=\dfrac{\fbox{ア}}{\fbox{イ}}$である。また、$n \geqq 1$に対して$a_n=S_n-S_{n-1}$であるから、関係式$(n+\fbox{ウ})a_{n+1}=(n+\fbox{エ})a_n (n=1,2,3,・・・)$・・・(*)が得られる。数列$\{{b_n}\}$を$b_n=n(n+1)(n+2)a_n (n=1,2,3,・・・)$で定めると、$b_1=\fbox{オ}$であり、$n \geqq 1$に対して$b_{n+1}=\fbox{カ}b_n$が成り立つ。ゆえに$a_n=\dfrac{\fbox{キ}}{n(n+1)(n+2)}$が得られる。
次に、数列$\{{T_n}\}=\displaystyle \sum_{k=1}^n \dfrac{a_k}{(k+3)(k+4)}(n=1,2,3,・・・)$で定める。
(2)(*)より導かれる関係式
$\dfrac{a_k}{k+3}-\dfrac{a_{k+1}}{k+4}=\dfrac{\fbox{ク}a_k}{(k+3)(k+4)} (k=1,2,3,・・・)$
を用いると
$T_n=A-\dfrac{\fbox{ケ}}{\fbox{コ}(n+p)(n+q)(n+r)(n+s)}(n=1,2,3,・・・)$
が得られる。ただしここに$A=\fbox{サ}{シス}$であり、$p \lt q\lt r \lt s$として$p=\fbox{セ},q=\fbox{ソ},r=\fbox{タ},s=\fbox{チ}$である。
(3)不等式$|T_n-A| \lt\dfrac{1}{10000(n+1)(n+2)}$を満たす最小の自然数$nはn=\fbox{ツテ}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP