福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2021早稲田大学人間科学部過去問
投稿日:2021.06.20

<関連動画>

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
[1]自然数$n$に対して、$S_n=5^n-1$とする。さらに、数列$\left\{a_n\right\}$の初項から
第$n$項までの和が$S_n$であるとする。このとき、$a_1=\boxed{\ \ ア\ \ }$である。また
$n \geqq 2$のとき
$a_n=\boxed{\ \ イ\ \ }・\boxed{\ \ ウ\ \ }^{n-1}$
である。この式は$n=1$の時にも成り立つ。
上で求めたことから、すべての自然数$n$に対して
$\sum_{k=1}^n\displaystyle \frac{1}{a_k}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}\left(1-\boxed{\ \ キ\ \ }^{-n}\right)$
が成り立つことが分かる。

[2]太郎さんは和室の畳を見て、畳の敷き方が何通りあるかに興味を持った。
ちょうど手元にタイルがあったので、畳をタイルに置き換えて、
数学的に考えることにした。
縦の長さが1、横の長さが2の長方形のタイルが多数ある。
それらを縦か横の向きに、隙間も重なりもなく敷き詰めるとき、
その敷き詰め方をタイルの「配置」と呼ぶ。

上の図(※動画参照)のように、縦の長さが3,横の長さが$2n$の長方形を$R_n$とする。
$3n$枚のタイルを用いた$R_n$内の配置の総数を$r_n$とする。
$n=1$のときは、下の図(※動画参照)のように$r_1=3$である。

また、$n=2n4$ときは、下の図(※動画参照)のように$r_2=11$である。

(1)太郎さんは次のような図形$T_n$内の配置を考えた。
$(3n+1)$枚のタイルを用いた$T_n$内の配置の総数を$t_n$とする。$n=1$
のときは、$t_1=\boxed{\ \ ク\ \ }$である。
さらに、太郎さんは$T_n$内の配置について、右下隅のタイルに注目して
次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$t_n=Ar_n+Bt_{n-1}$
が成り立つことが分かる。ただし、$A=\boxed{\ \ ケ\ \ }, B=\boxed{\ \ コ\ \ }$である。
以上から、$t_2=\boxed{\ \ サシ\ \ }$であることが分かる。
同様に、$R_n$の右下隅のタイルに注目して次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$r_n=Cr_{n-1}+Dt_{n-1}$
が成り立つことが分かる。ただし、$C=\boxed{\ \ ス\ \ }, D=\boxed{\ \ セ\ \ }$である。

(2)畳を縦の長さが1, 横の長さが2の長方形と見なす。縦の長さが3, 横の長さが6
の長方形の部屋に畳を敷き詰めるとき、敷き詰め方の総数は$\boxed{\ \ ソタ\ \ }$である。
また、縦の長さが、横の長さがの長方形の部屋に畳を敷き詰めるとき、
敷き詰め方の総数は$\boxed{\ \ チツテ\ \ }$である。

2021共通テスト過去問
この動画を見る 

どってことない問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{2021}!$の末尾に$0$は何個並ぶか.
この動画を見る 

横浜市立(医)3項間漸化式 良問再投稿

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$

出典:2016年横浜市立大学 医学部 過去問
この動画を見る 

慶應義塾大(経済)数列の最大値

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011慶應義塾大学過去問題
n=1,2,・・・100
$a_n=n3^n$・${}_{100} \mathrm{ C }_n$
$a_n$を最大にするnの値
この動画を見る 

漸化式 香川大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の解を$\alpha,\beta(\alpha \gt \beta)$とする.

(1)$\alpha^n+\beta^m$は偶数であることを示せ.
(2)$[\alpha^n]$は奇数であることを示せ.

2018香川(医)過去問
この動画を見る 
PAGE TOP