【高校数学】三角比④~90°- θ,180° - θ考え方,イメージ~ 3-4【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】三角比④~90°- θ,180° - θ考え方,イメージ~ 3-4【数学Ⅰ】

問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。

sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。

sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
投稿日:2018.12.04

<関連動画>

【数Ⅰ】2次関数:2次関数 y=-x²∔2ax (0≦x≦2)の最大値と最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数 $y=-x^2+2ax(0\leqq x\leqq 2)$の最大値と最小値を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【高校数学】数Ⅰ-10 因数分解③(応用編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう。
①$xy-x+2y-2$
②$x^2-8y+2xy-16$
③$x^2-(2a-3)x+a^2-3a+2$
④$x^2+5xy+6y^2-2x-7y-3$
この動画を見る 

福田のわかった数学〜高校1年生013〜絶対不等式(1)

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対不等式(1)
任意の実数$x$に対して
$ax^2+4x+a \gt 0$
が成り立つような$a$の値の範囲は?
この動画を見る 

補助線のセンス問われます 円と三平方の定理 中央大附属

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径=2
BH=?
*図は動画内参照

中央大学附属高等学校
この動画を見る 
PAGE TOP