問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。
sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。
sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。
sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。
sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
投稿日:2018.12.04