答えは0通り⁉️ - 質問解決D.B.(データベース)

答えは0通り⁉️

問題文全文(内容文):
100円玉、50円玉、10円玉で3000面を支払うのは何通りか?

産業医科大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
100円玉、50円玉、10円玉で3000面を支払うのは何通りか?

産業医科大過去問
投稿日:2023.05.31

<関連動画>

福田の数学〜早稲田大学2025教育学部第1問(3)〜5角柱の10個の点から同一平面上にある4点を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)底面が正五角形である$5$角柱の頂点から相異なる

$4$点を選ぶとき、

$4$点が同一平面上にある確率を求めよ。

ただし、$4$点の選び方は同様に確からしいとする。

$2025$年早稲田大学教育学部過去問題
この動画を見る 

福田の数学〜千葉大学2024年文系第2問〜袋から元に戻さないで球を取り出し得点を考える確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
白球が3個、黒球が5個、赤球が2個入った袋がある。以下のゲームを続けて$n$回続けて行う。
袋から球を1個取り出す。白球だった場合は1点を獲得する。黒球だった場合はさいころを投げて、出た目が3の倍数だった場合には1点、そうでない場合には0点を獲得する。赤球だった場合はコインを投げて、表が出た場合は2点、裏が出た場合は0点を獲得する。取り出した球は袋に戻さない。
(1) $n=2$のとき、総得点がちょうど3点となる確率を求めよ。
(2) $n=3$のとき、総得点がちょうど5点となる確率を求めよ。
(3) $n=3$のとき、総得点が4点以上となる確率を求めよ。
この動画を見る 

【数学】確率の求め方間違っていませんか?確率の前提の話 前編

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?

答えに違いはある??
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
この動画を見る 

二次方程式の解と確率 2024立教新座

アイキャッチ画像
単元: #数Ⅰ#数A#2次関数#場合の数と確率#2次方程式と2次不等式#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
さいころを3回続けて投げるとき、1回目、2回目、3回目に出た目の数をそれぞれa,b,cとする。
2次方程式$ax^2+bx+c=0$について2つの解が-2、-3となる確率を求めよ
2024立教新座高等学校
この動画を見る 
PAGE TOP