2023九州大学 4次方程式と複素平面上の三角形 - 質問解決D.B.(データベース)

2023九州大学 4次方程式と複素平面上の三角形

問題文全文(内容文):
(1)$x^4-2x^3+3x^2-2x+1=0$を解け.
(2)複素数平面上の$\triangle ABC$の頂点を表す複素数を$\alpha,\beta,\delta$とする.
$(\alpha-\beta)^4+(\beta-\delta)+(\delta-\alpha)^4=0$が成り立つとき,$\triangle ABC$はどのような三角形か.

2023九州大過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$x^4-2x^3+3x^2-2x+1=0$を解け.
(2)複素数平面上の$\triangle ABC$の頂点を表す複素数を$\alpha,\beta,\delta$とする.
$(\alpha-\beta)^4+(\beta-\delta)+(\delta-\alpha)^4=0$が成り立つとき,$\triangle ABC$はどのような三角形か.

2023九州大過去問
投稿日:2023.03.02

<関連動画>

九州大 3次方程式:2次方程式 有理数解

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos20^{ \circ }+i \sin 20^{ \circ }$
$\alpha = Z+\bar{ Z }$←共役な複素数

(1)
$\alpha$が解となる整数係数3次方程式は?

(2)
(1)の3次方程式は、3つの実数解をもち、そのすべては有理数でないことを示せ

(3)
有理数係数の2次方程式で$\alpha$を解に持つものはないことを示せ

出典:2000年九州大学 過去問
この動画を見る 

学習院大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{Z-1-3i}{Z-2}$が純虚数であるような複素数$Z$について
$\vert Z \vert$の最大・最小を求めよ。

出典:2003年学習院大学 過去問
この動画を見る 

福岡教育大 複素平面の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z=a+bi(a \gt 0,b \gt 0)z^2+\dfrac{1}{z^2}=1$を満たす.

(1)zを極形式で表せ$(0 \lt \theta \lt 2\pi)$

(2)$z^{100}+\dfrac{1}{z^{100}}$の値を求めよ.

(3)$z,z^2,z^{100}+\dfrac{1}{z^{100}}$の三点でできる三角形の面積を求めよ.

福岡教育大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題040〜上智大学2019年度TEAP理系第2問〜複素数平面上で正三角形となる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面において、円周$|z|=1$上の異なる3点$z_1,z_2,z_3$を考える。
このとき、次の条件pとqは同値であることを示せ。
$p:z_1,z_2,z_3$を頂点とする三角形が正三角形である。
$q:z_1+z_2+z_3=0$

2019上智大過去問
この動画を見る 

【数ⅢC】複素数平面の基本⑧円の方程式を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
円の方程式を考える
次の方程式で与えられる円の中心、半径を求めよ
(1)$\vert z+2i\vert=3$
(2)$\vert z+3-2i\vert =1$
(3)$\vert z-i\vert=1$
この動画を見る 
PAGE TOP