26次式の因数分解 - 質問解決D.B.(データベース)

26次式の因数分解

問題文全文(内容文):
因数分解せよ.
$\displaystyle \sum_{n=0}^{26} x^n=1+x+x^2+・・・・+x^{26}$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$\displaystyle \sum_{n=0}^{26} x^n=1+x+x^2+・・・・+x^{26}$
投稿日:2023.01.23

<関連動画>

福田の数学〜早稲田大学2023年人間科学部第4問〜絶対値の付いた2次関数とx分のyの最大値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$を1以上の定数とする。点P($x$,$y$)は曲線$y$=$|x^2-5x+4|$上を動く点で、$x$座標は1≦$x$≦$a$を満たすものとする。このとき$\displaystyle\frac{y}{x}$の最大値が、定数$a$の値によらないような$a$の値の範囲は、
$\boxed{\ \ シ\ \ }$≦$a$≦$\boxed{\ \ ス\ \ }$+$\sqrt{\boxed{\ \ セ\ \ }}$
である。この範囲の$a$の値における$\displaystyle\frac{y}{x}$の最大値は$\boxed{\ \ ソ\ \ }$である。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$4\sqrt2$の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さはそれぞれ$AB=4\sqrt6,BC=10,C=6$とする。
(1)$\cos\angle ABC=\boxed{\ \ テ\ \ }$である。平面ABCで球面Sを切った切り口の円をTとする。
Tの半径は$\boxed{\ \ ト\ \ }$である。点Dが円T上を動くとき、$\triangle DAB$の面積の最大値は
$\boxed{\ \ ナ\ \ }$である。
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは$\boxed{\ \ ニ\ \ }$である。
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は$\boxed{\ \ ヌ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

大学入試の因数分解 奈良大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
abc+ab+bc+ca+a+b+c+1

奈良大学
この動画を見る 

【数Ⅰ】数と式:x+y+z=xy+yz+zx=2√2+1, xyz=1を満たす実数x,y,zに対して、次の式の値を求めよう。(1)1/x+1/y+1/z (2)x²+y²+z² (3)x³+y³+z³

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x+y+z=xy+yz+zx=2\sqrt2+1, xyz=1$を満たす実数x,y,zに対して、次の式の値を求めよう。(1)$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}$ (2)$x^2+y^2+z^2$ (3)$x^3+y^3+z^3$
この動画を見る 

5つの正方形

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
5つの正方形
x=?
*図は動画内参照
この動画を見る 
PAGE TOP