連立二元4次方程式 - 質問解決D.B.(データベース)

連立二元4次方程式

問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
x^4+y^4=1234
\end{array}
\right.
\end{eqnarray}$
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
x^4+y^4=1234
\end{array}
\right.
\end{eqnarray}$
投稿日:2022.12.24

<関連動画>

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 

【数Ⅰ】【図形と計量】面積応用9 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形$\rm ABCD$の2つの対角線$\rm AC,BD$の交点を$\rm O$とする。$\rm AC=4,BD=7,\angle AOB=45^{\circ}$であるとき、四角形$\rm ABCD$の面積$S$を求めよ。
この動画を見る 

正方形と2つの正三角形

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△DEFと△BCGは正三角形
△DEF=1のとき△BCGは?
*図は動画内参照
この動画を見る 

福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。

2015一橋大学文系過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第1問(2)〜2次関数のグラフの位置から係数決定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(2)2次関数$y=ax^2+bx+c$の係数$a,b,c$は次の条件をともに満たすとする。
条件1.$a,b,c$は互いに異なる。
条件2. -3以上5以下の整数である。
この2次関数のグラフが、原点を通り、かつ、頂点が第1象限または第3象限
にあるような$a,b,c$の組は全部で$\boxed{\ \ イ\ \ }$組ある。

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP