指数の基本問題 - 質問解決D.B.(データベース)

指数の基本問題

問題文全文(内容文):
x,yは実数である.
$2^x+2^y=10,4^{x+y}=5,2^{x-y}+2^{y-x}=?$
これを解け.
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数である.
$2^x+2^y=10,4^{x+y}=5,2^{x-y}+2^{y-x}=?$
これを解け.
投稿日:2022.07.31

<関連動画>

問題は解けるようにできている。 指数の計算 早実

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(-3)^{20}-(-3)^{15} \times 81}{4} -3^{19}$

早稲田実業学校
この動画を見る 

不定方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは実数である.
$a+b+c=\sqrt{45}$
$a^2+b^2+c^2=15$
$a^4+b^4+c^4=?$
これを解け.
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第4問〜指数不等式と対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$p$を正の実数、$m$を自然数とし、

曲線$y=-x^2$上の点$(-p,-p^2)$における

接線と直線$y=2m$の交点を$P_m$とする。

$P_m$の$x$座標が$1$以下となる$m$の最大値を

$N$とする。

(1)$P_m$の$x$座標を、$p$と$m$を用いて表せ。

(2)$N=40$が成り立つ$p$の範囲を求めよ。

以下、$n$を自然数とし、

$a=3n\log_3 6-\log_2+n$とする。

(3)$3^a$は$2$以上の自然数である。

$3^a$の素因数分解を、$n$を用いて書け。

(4)$p=3^a$のとき、$N\lt 2^{1000}$となる

自然数$n$の最大値を求めよ。

なお、必要があれば$1.58 \lt \log_2 3 \lt 1.50$を用いよ。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

聖マリアンナ医大 4次関数と3次関数の共有点の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#対数関数#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+x^2-5x+3$
$g(x)=x^4+x^2-(k+1)x+k$
$f(x)$と$g(x)$の共有点の個数

出典:2010年聖マリアンナ医科大学 過去問
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$2^{32}$ vs $3^{21}$
この動画を見る 
PAGE TOP