【中学数学】三角形の面積を2等分する直線の問題の解き方~1次関数の応用~ 3-6【中2数学】 - 質問解決D.B.(データベース)

【中学数学】三角形の面積を2等分する直線の問題の解き方~1次関数の応用~ 3-6【中2数学】

問題文全文(内容文):
(1)点$O$を通り、$\triangle AOB$の面積を二等分する直線の式を求めよ。

(2)点$B$を通り、$\triangle AOB$の面積を二等分する直線の式を求めよ。
チャプター:

00:00 はじまり

00:37 問題

00:56 問題解説(1)

04:04 問題解説(2)

06:04 まとめ

06:37 問題と答え

単元: #中2数学#1次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)点$O$を通り、$\triangle AOB$の面積を二等分する直線の式を求めよ。

(2)点$B$を通り、$\triangle AOB$の面積を二等分する直線の式を求めよ。
投稿日:2021.09.03

<関連動画>

【数学検定】数学検定3級対策問題1

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#数学検定・数学甲子園・数学オリンピック等#文字と式#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
数学検定3級対策問題1の解説動画です。
問題1.次の計算をしなさい。
(1) 9-(-5)+(-8)
(2) 24-16÷(-4)
(3) 2³+(-3)²
(4) 35/36 ÷ (-2/9) × 4/7
(5) √125-√45+√20
(6) (√3+4)²-24/√3
(7) 3(3x+5)+4(2x-7)
(8) 0.5(6x-1)-0.8(3x-4)
(9) 7(4x-5y)-2(9x+y)
(10) 3x-6y/8 - 2x-7y/12
(11) -5x²y × 9x²y²
(12) 13x³y²/5 ÷ (-4x²y/5) × (-2xy²/13)
この動画を見る 

【ルーチン】連立方程式の解き方《前編》~【行列のできる】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】連立方程式の解き方《前編》

$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax + by+cz = l \\
dx + ey +fz= m \\
gx + hy +i3z= n

\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【テスト対策 中1】4章-6

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において、①は関数$y=ax$、②は関数$y=\dfrac{18}{x}$のグラフである。
点$A$は①と②の交点で、その$y$座標は6である。
このとき、次の問いに答えなさい。

(1)点$A$の座標を求めなさい。

(2)定数$a$の値を求めなさい。

(3)②のグラフ上の点で、$x$座標と$y$座標がともに整数となる点は
全部で何個あるか求めなさい。

(4)点$A$から$x$軸、$y$軸にひいた垂線が$x$軸、$y$軸と交わる点をそれぞれ
$B、C$とし、①のグラフ上に点$P$、$y$軸上に$y$標が8である点をとる。
三角形$OPQ$の面積が四角形$OBAC$の面積と等しくなるとき、
点$P$の座標をすべて求めなさい。

図は動画内参照
この動画を見る 

中2数学「直角三角形の合同条件」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題
次の図で,合同な直角三角形の組を見つけ,記号$\equiv $を使って表しなさい.
また,そのときに使った直角三角形の合同条件を答えなさい.
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP