【中2 数学】 2-③③ グラフを読み取る!(一次関数) - 質問解決D.B.(データベース)

【中2 数学】  2-③③ グラフを読み取る!(一次関数)

問題文全文(内容文):
中2 数学 グラフを読み取る!(一次関数)
[公式]
$y=ax+b$
a:傾き、b:切片
[問題]次の直線を一次関数で表せ


※グラフは動画内参照


単元: #中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 グラフを読み取る!(一次関数)
[公式]
$y=ax+b$
a:傾き、b:切片
[問題]次の直線を一次関数で表せ


※グラフは動画内参照


投稿日:2012.07.18

<関連動画>

福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解

アイキャッチ画像
単元: #連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$ 
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。

2017一橋大学文系過去問
この動画を見る 

【最初の2分間が全て!今年の的中問題】図形:高知県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平行四辺形$ABCD$の点$E$は辺$AD$上で$AE:ED=1:2$である.
点$F$は辺$BC$上で$BE$と$FD$は平行である.
交点$G$は線分$AC$と線分$BE$の交点であり,交点$H$は線分$AC$と線分$FD$の交点である.
$ \triangle ABG \equiv CDH$を証明しなさい.

高知県高校過去問
この動画を見る 

【数学】確率の求め方間違っていませんか?確率の前提の話 前編

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?

答えに違いはある??
この動画を見る 

【中2 数学】  2-③⑥ 交点の求め方

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 交点の求め方
次の問に答えよ
① 2直線 $l : y =-2x +3$、$m : y = x + 1$の交点は?
※図は動画内参照
この動画を見る 

【数学】中2-14 連立方程式① 準備編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x+y=15$のように、2つの文字を ふくむ一次方程式を
①________という。
そして・・・ $\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=15 \\
2x+y=9
\end{array}
\right.
\end{eqnarray}$ みたいに
2つの方程式を組にしたものを、 ②________っていって、
これを計算して でた、どちらにもあてはまる文字の値の
組を③________っていうんだ!


$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
2x-y=8
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
x-y=1 \\
x+2y=-1
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=7 \\
-x+y=-6
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
-2x+y=-4 \\
x-3y=9
\end{array}
\right.
\end{eqnarray}$
④㋐~㋓の中で$(3,-2)$が解に
なるすべてを選ぼう!
この動画を見る 
PAGE TOP