おすすめの解き方 - 質問解決D.B.(データベース)

おすすめの解き方

問題文全文(内容文):
【中学数学】この形の問題の裏技集(角の二等分線と内角の和)
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】この形の問題の裏技集(角の二等分線と内角の和)
投稿日:2021.12.26

<関連動画>

【少しでも上手く…!】連立方程式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$
\left\{
\begin{array}{l}
(a+2)x + (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
$
$の解が x = 3,y = 1であるとき、a = \boxed{ } , b = \boxed{ }である$
この動画を見る 

式の値 ラ・サール 2023

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x = \sqrt 7 + \sqrt 2 \\
y = \sqrt 7 - \sqrt 2
\end{array}
\right.
\end{eqnarray}

$x^4 - 6x^2y^2 +y^4 = ?$

2023ラ・サール学園
この動画を見る 

連立方程式:東京都立青山高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京都立青山高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京都立青山高等学校

連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x-1}{3}+\displaystyle \frac{3y+1}{6}= 0 \\
0.4(x+4) + 0.5(y-3) = 0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【中学数学】点Pの1次関数の問題演習~解き方を身に付けろ~ 3-7【中2数学】

アイキャッチ画像
単元: #中2数学#1次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図のような長方形$ABCD$がある。点$P$は点$A$を出発し、毎秒$1\,\rm{cm}$の速さで長方形の周上を$A$から$D$まで移動する。
このとき、点$P$が点$A$を出発して$x$秒後の$\triangle APD$の面積を$y\,\rm{cm}^2$とする。
(1)点$P$が次の辺にあるとき$x$の変域を答えよ
①辺$AB$ ②辺$BC$ ③辺$CD$

(2)$x$が点$A$を出発してから点$D$に着くまでの$x$と$y$の関係をグラフに表せ
この動画を見る 

高等学校入学試験予想問題:三重県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $

$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?

$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る 
PAGE TOP