不定方程式の解き方 - 質問解決D.B.(データベース)

不定方程式の解き方

問題文全文(内容文):
不定方程式の解の求め方説明動画です
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
不定方程式の解の求め方説明動画です
投稿日:2022.01.07

<関連動画>

気付けば一瞬!! 正方形の折り返し 角度

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x = ?$
*図は動画内参照
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part2

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

整数問題だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2+1232=3^n$を満たす自然数$(m,n)$をすべて求めよ.
この動画を見る 

大学入試問題#897「解法の迷走」 #北海道大学(2024)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{x^2-x+1}{x^2+x+1}$
が整数となるような実数$x$をすべて求めよ。

出典:2024年北海道大学後期
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 10進法で表したときm桁(m \gt 0)である正の整数nの第i桁目(1 \leqq i \leqq m)を\\
m_iとしたとき、i≠jのときn_i≠n_jであり、かつ、次の(\textrm{a})または(\textrm{b})のいずれか\\
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。\\
(\textrm{a})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \lt n_{i+1}となり、\\
iが偶数の時n_i \gt n_{i+1}となる。\\
(\textrm{b})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \gt n_{i+1}となり、\\
iが偶数の時n_i \lt n_{i+1}となる。\\
例えば、361は(\textrm{a})を満たす10進法3桁のデコボコ数であり、52409は(\textrm{b})を\\
満たす10進法5桁のデコボコ数である。なお、4191は(\textrm{a})を満たすが「i≠jのとき\\
n_i≠n_jである」条件を満たさないため、10進法4桁のデコボコ数ではない。\\
(1)nが10進法2桁の数(10 \leqq n \leqq 99)の場合、n_1≠n_2であれば(\textrm{a})または(\textrm{b})を\\
満たすため、10進法2桁のデコボコ数は\ \boxed{\ \ アイ\ \ }\ 個ある。\\
(2)nが10進法3桁の数(100 \leqq n \leqq 999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ ウエオ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ カキク\ \ }個あるため、\\
10進法3桁のデコボコ数は合計\boxed{\ \ ケコサ\ \ }個ある。\\
(3)nが10進法4桁の数(1000 \leqq n \leqq 9999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ シスセソ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ タチツテ\ \ }個あるため、\\
10進法4桁のデコボコ数は合計\boxed{\ \ トナニヌ\ \ }個ある。また10進法4桁のデコボコ数\\
の中で最も大きなものは\boxed{\ \ ネノハヒ\ \ }、最も小さなものは\boxed{\ \ フヘホマ\ \ }である。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP