立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照

信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照

信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
投稿日:2018.06.07

<関連動画>

大学入試問題#321 甲南大学(2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#甲南大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x^2(1-x)^2}{1+x^2}dx$

出典:2021年甲南大学 入試問題
この動画を見る 

福田の数学〜まったく手が出ないときの対処法〜慶應義塾大学2023年総合政策学部第4問前編〜格子点を内包する軌道の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
平面上でx座標もy座標も整数である点を格子点という。 m とnを正の整数とするとき、xy平面上に点 $P_{ij}$(i = 1 , 2 ,・・・,j=1,2,・・・,n)を格子点(i,j)に置く。次にこれらの点を囲むようにA ( 0.5 , 0.5 ), B ( m + 0.5 , 0.5 ), C ( m + 0.5 ,n+ 0.5 ),D ( 0.5 ,n+ 0.5 )を頂点とする長方形を描く。
長方形ABCD の内側に以下のように「軌道」を作図する。
l. $P_{ij}$の外周の点(i= 1 またはi= m またはj= 1 またはj=nの点)を選び、その点から 0.5 の距離だけはなれた長方形 ABCD 上の点を軌道の起点とし、基点の置かれた辺と 45°の角度をなす直線の軌道を長方形 ABCD 内に描く。
2. 軌道が長方形 ABCD の別の辺にぶつかった場合、軌道を直角に曲げる。この操作を繰り返すと、軌道はいずれ起点に戻るので、そこで描くのを停止すると、一筆書きで閉じた 1 つの軌道が得られる。
3.ステップ 1 と 2 で描いた軌道の内側にすべての点 $P_{i,j}$が含まれているようなら、作図を終了する。軌道の外にある点が残っている場合、まだ軌道の外にある外周の点 $P_{i,j}$ を選び、ステップ 1 以降の操作を繰り返す。すべての点 $P_{i,j}$を軌道内に納めるために必要な最小の軌道の数を T(m,n)と書くことにする。右の図は T(4,2)= 2 であることを示している。(異なる軌道を破線と点線で描き分けた)
(l) T ( 4 , 4 )は$\fbox{ア}$である。
( 2 ) T ( 15 , 5 )は$\fbox{イ}$である。
( 3 ) T ( 2023 , 1015 )は$\fbox{ウ}$である。
( 4 )下の 12 個の T ( m ,n)の値の最大値は$\fbox{エ}$であり、最大値を取るものが$\fbox{オ}$個ある。T(2,1), T(3, 2 ), T(8, 5 ), T(6, 3 ), T(9, 6 ), T ( 24 , 15 ), T ( 63 , 39 ), T ( 165 ,102 ),T ( 699 , 267 ), T ( 2961 ,1131), T ( 7752 , 4791) , T ( 32838 , 12543 )

2023慶應義塾大学総合政策学部過去問
この動画を見る 

大学入試の因数分解  北海道薬科大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2y^2+x^2y+xy^2-x-y-1$

北海道薬科大学
この動画を見る 

数学「大学入試良問集」【4−3 経路の問題】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$xy$平面上に$x=(k$は整数)または$y=l(l$は整数)で定義される碁盤の目のような街路がある。
4点$(2,2),(2,4),(4,2),(4,4)$に障害物があって通れないとき、$(0,0)$と$(5,5)$を結ぶ最短経路は何通りあるか。
この動画を見る 

福田の数学〜立教大学2023年経済学部第2問〜利息計算と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1年目の初めに新規に100万円を預金し、2年目以降の毎年初めに12万円を追加で預金する。ただし、毎年の終わりに、その時点での預金額の8%が利子として預金に加算される。自然数$n$に対して、$n$年目の終わりに利子が加算された後の預金額を$S_n$万円とする。このとき、以下の問いに答えよ。
ただし、$\log_{10}2$=0.3010, $\log_{10}3$=0.4771とする。
(1)$S_1$, $S_2$をそれぞれ求めよ。
(2)$S_{n+1}$を$S_n$を用いて表せ。
(3)$S_n$を$n$を用いて表せ。
(4)$\log_{10}1.08$を求めよ。
(5)$S_n$>513 を満たす最小の自然数$n$を求めよ。
この動画を見る 
PAGE TOP