解けるように選ばれた数字で作られた問題 - 質問解決D.B.(データベース)

解けるように選ばれた数字で作られた問題

問題文全文(内容文):
$ f(x)=\dfrac{7^x}{7^x+7}$とする.
$f\left(\frac{1}{50} \right)+f\left(\frac{2}{50} \right)+……f\left(\frac{98}{50} \right)+f\left(\frac{99}{50} \right)$
の値を求めよ.
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=\dfrac{7^x}{7^x+7}$とする.
$f\left(\frac{1}{50} \right)+f\left(\frac{2}{50} \right)+……f\left(\frac{98}{50} \right)+f\left(\frac{99}{50} \right)$
の値を求めよ.
投稿日:2022.07.04

<関連動画>

多項定理の応用OnlineMathContest

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は自然数であり,$p+q+r=10$である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
この動画を見る 

学習院大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ

出典:学習院大学 過去問
この動画を見る 

福田のおもしろ数学326〜三角形の内接円の半径

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
図のように半径34の円が8個、△ABCの辺BCに接しながら一列に外接しながら並んでいる。両端の円はそれぞれ辺AB、ACに接する。同じように半径1の円を並べると2022個並んだ。このとき、△ABCの内接円の半径を求めよ。
この動画を見る 

変な方程式 指数タワー

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け. $x\gt 0$
$(4x)^x=4^{4^4}$
この動画を見る 
PAGE TOP