問題文全文(内容文):
$\alpha=\cos\displaystyle \frac{\pi}{10}+i\sin\displaystyle \frac{\pi}{10}$ のとき次の値を求めよ。
(1)$\alpha^{19}+\alpha^{18}+\alpha^{17}+\cdots+\alpha+1$
(2)$\alpha^{19}\alpha^{18}\alpha^{17}\cdots\alpha^2\alpha$
(3)$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\cdots(1-\alpha^{19})$
$\alpha=\cos\displaystyle \frac{\pi}{10}+i\sin\displaystyle \frac{\pi}{10}$ のとき次の値を求めよ。
(1)$\alpha^{19}+\alpha^{18}+\alpha^{17}+\cdots+\alpha+1$
(2)$\alpha^{19}\alpha^{18}\alpha^{17}\cdots\alpha^2\alpha$
(3)$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\cdots(1-\alpha^{19})$
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\alpha=\cos\displaystyle \frac{\pi}{10}+i\sin\displaystyle \frac{\pi}{10}$ のとき次の値を求めよ。
(1)$\alpha^{19}+\alpha^{18}+\alpha^{17}+\cdots+\alpha+1$
(2)$\alpha^{19}\alpha^{18}\alpha^{17}\cdots\alpha^2\alpha$
(3)$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\cdots(1-\alpha^{19})$
$\alpha=\cos\displaystyle \frac{\pi}{10}+i\sin\displaystyle \frac{\pi}{10}$ のとき次の値を求めよ。
(1)$\alpha^{19}+\alpha^{18}+\alpha^{17}+\cdots+\alpha+1$
(2)$\alpha^{19}\alpha^{18}\alpha^{17}\cdots\alpha^2\alpha$
(3)$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\cdots(1-\alpha^{19})$
投稿日:2018.05.24