東北大 分数型漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東北大 分数型漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2008東北大学過去問題
$a_1=2 \quad a_{n+1}=\frac{4a_n+1}{2a_n+3}$
(1)$b_n = \frac{a_n+β}{a_n+α}$として$\{ b_n \}$が等比数列となるようなα,β(α>β)を1組求めよ。
(2)$\{ a_n \}$の一般項$a_n$を求めよ。
単元: #大学入試過去問(数学)#数列#漸化式#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008東北大学過去問題
$a_1=2 \quad a_{n+1}=\frac{4a_n+1}{2a_n+3}$
(1)$b_n = \frac{a_n+β}{a_n+α}$として$\{ b_n \}$が等比数列となるようなα,β(α>β)を1組求めよ。
(2)$\{ a_n \}$の一般項$a_n$を求めよ。
投稿日:2018.07.12

<関連動画>

中央大 三項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023中央大学過去問題
$a_n=(2+\sqrt{3})^n+(2-\sqrt{3})^n$
①$a_{n+2}+a_n=4a_{n+1}$を示せ
②$a_{n+1}+a_n$は3の倍数。示せ
③$a_{2023}$を3で割った余り
この動画を見る 

福田の数学〜京都大学2022年理系第6問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 数列\left\{x_n\right\}, \left\{y_n\right\}を次の式\\
x_1=0, x_{n+1}=x_n+n+2\cos\frac{2\pi x_n}{3}  (n=1,2,3,\ldots)\\
y_{3m+1}=3m, y_{3m+2}=3m+2, y_{3m+3}=3m+4  (m=0,1,2,3,\ldots)\\
により定める。このとき、数列\left\{x_n-y_n\right\}の一般項を求めよ。
\end{eqnarray}
この動画を見る 

佐賀大 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 複素数からなる数列{z_n}を、次の条件で定める。\hspace{150pt}\\
z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)\\
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。\\
(1)z_2=\boxed{\ \ ツ \ \ }+\boxed{\ \ ツ \ \ }\ i, \ \ \ z_3=\boxed{\ \ ト \ \ }+\boxed{\ \ ナ \ \ }\ i,\ \ \ z_4=\boxed{\ \ 二 \ \ }+\boxed{\ \ ヌ \ \ }\ i \ \ である。\\
(2)r \gt 0,\ 0 \leqq θ \lt 2\pi を用いて、1+i=r(\cos θ+i\sin θ)のように1+iを極形式で\\
表すとき、r=\sqrt{\boxed{\ \ ネ \ \ }},\ θ=\frac{\boxed{\ \ ノ \ \ }}{\boxed{\ \ ハ \ \ }}\piである。\\
(3)すべての正の整数nに対する\triangle PA_nA_{n+1}が互いに相似になる点Pに対応する\\
複素数は、\boxed{\ \ ヒ\ \ }+\boxed{\ \ フ \ \ }\ iである。\\
(4)|z_n| \gt 1000となる最小のnはn=\boxed{\ \ へ \ \ }である。\\
(5)A_{2022+k}が実軸上にある最小の正の整数kはk=\boxed{\ \ ホ \ \ }である。
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第4問〜対数不等式と数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} kを実数の定数とする。実数xは不等式\\
(*)  2\log_5x-\log_5(6x-5^k) \lt k-1\\
を満たすとする。\\
\\
(1)不等式(*)を満たすxの値の範囲を、kを用いて表せ。\\
\\
(2)kを自然数とする。(*)を満たすxのうち奇数の個数をa_kとし\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。a_kをkの式で表し、さらにS_nをnの式で表せ。\\
\\
(3)(2)のS_nに対して、S_n+nが10桁の整数となるような自然数n\\
の値を求めよ。なお、必要があれば0.30 \lt \log_{10}2 \lt 0.31を用いよ。
\end{eqnarray}
この動画を見る 
PAGE TOP