解けるように作られた指数方程式 - 質問解決D.B.(データベース)

解けるように作られた指数方程式

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
投稿日:2022.05.26

<関連動画>

0の0乗ってなに?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
結局0の0乗っていくつになるの?解説動画です
この動画を見る 

指数・対数の基本.2通りの解法(実質同じだけど)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^a=125,5^b-49,7^c=81,abc=?$
これを解け.
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(6)〜指数方程式が解をもたない条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)aを実数とする。実数xの関数f(x)=$4^x$+$4^{-x}$+a($2^x$+$2^{-x}$)+$\frac{1}{3}a^2$-1 がある。
(i)t=$2^x$+$2^{-x}$とおくときtの最小値は$\boxed{\ \ ソ\ \ }$であり、f(x)をtの式で表すと$\boxed{\ \ タ\ \ }$である。
(ii)a=-3のとき、方程式f(x)=0の解をすべて求めると、x=$\boxed{\ \ チ\ \ }$である。
(iii)方程式f(x)=0が実数解を持たないようなaの値の範囲は$\boxed{\ \ ツ\ \ }$である。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 実数からなる集合A,B,Cを次のように定義する。ただし、a \gt 0\\
A=\left\{x |\ |x| \lt a \right\}\\
B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}\\
C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}\\
\\
(1)A \cap Bが空集合であるための必要十分条件はa \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }である。\\
(2)A \supset Bであるための必要十分条件はa \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }である。\\
\\
\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }の選択肢:(\textrm{a})= (\textrm{b})\lt  (\textrm{c})\leqq  (\textrm{d})\gt  (\textrm{e})\geqq (\textrm{f})≠  \\
\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }の選択肢:(\textrm{a})1 (\textrm{b})2  (\textrm{c})3  (\textrm{d})5  (\textrm{e})7 (\textrm{f})10  \\
(\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7\\
\\
(3)-1 \boxed{\ \ き\ \ }Cであり、5 \boxed{\ \ く\ \ }Cである。\\
\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }の選択肢:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset\\
(4)Cに属する整数は\boxed{\ \ オ\ \ }個ある。\\
(5)A \subset Cとなるaのうち、整数で最大のものは\boxed{\ \ カ\ \ }である。\\
(6)A \supset Cとなるaのうち、整数で最小のものは\boxed{\ \ キ\ \ }である。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=3^y$
$4^{\frac{x}{y}} + 3^{\frac{y}{x}}=?$
この動画を見る 
PAGE TOP