連立2元4次方程式 - 質問解決D.B.(データベース)

連立2元4次方程式

問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4+x^2y^2+y^4=63 \\
x^2+xy+y^2=9
\end{array}
\right.
\end{eqnarray}$
これを解け.
単元: #連立方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4+x^2y^2+y^4=63 \\
x^2+xy+y^2=9
\end{array}
\right.
\end{eqnarray}$
これを解け.
投稿日:2022.05.21

<関連動画>

【数Ⅰ】【集合と論証】有理数、無理数の証明 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たすP、Qの値を求めよ
$(1) (\sqrt{ 2 }-1)P+\sqrt{ 2 }Q=2+\sqrt{ 2 }$
$(2)\frac{P}{\sqrt{ 2 }-1}+\frac{Q}{\sqrt{ 2 }}=1$
この動画を見る 

福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。

2023神戸大学文系過去問
この動画を見る 

【高校受験対策】数学-死守20

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#数と式#比例・反比例#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#単位・比と割合・比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(-2)+11$を計算しなさい.

②$(- 4) ^ 2 \times (- 3)$を計算しなさい.

③$(6a - 15b) \div 3$を計算しなさい.

④$(2x - 1)(x + 3)$を展開しなさい.

⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.

⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.

⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.

⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.

ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$

⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.

(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.

(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.

⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,

(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.

(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」

図は動画内参照
この動画を見る 

中央値(メジアン)とは?  日大東北

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#データの分析#データの分析#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
6人のハンドボール投げの記録
x,19,12,23,9,13
中央値=15(m)のとき
x=?

日本大学東北高等学校
この動画を見る 

福田のおもしろ数学184〜2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0≦$x$≦1, 0≦$y$≦1のとき、2変数関数
$f(x,y)$=$5xy-2(x+y)+1$
の最大値$M$、最小値$m$を求めよ。
この動画を見る 
PAGE TOP