高知大 漸化式 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

高知大 漸化式 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
高知大学 過去問

初項a1=4(2n+2)anna(n+1)3n6(n=1,2,3,)であるとき次の問いに答えよ。

(1)一般項anを求めよ

(2)k=1nakを求めよ
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学 過去問

初項a1=4(2n+2)anna(n+1)3n6(n=1,2,3,)であるとき次の問いに答えよ。

(1)一般項anを求めよ

(2)k=1nakを求めよ
投稿日:2019.01.01

<関連動画>

【数B】【数列】漸化式2 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 {an} の一般項を求めよ。
(1)a1=10, an+1=2an+2n+2
(2)a1=3, an+1=6an+3n+1
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第5問〜定積分で定義された数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
5 an=1n!1e(logx)ndx (n=1,2,3,...)とおく。
(1)a1を求めよ。
(2)不等式0≦ane1n! が成り立つことを示せ。
(3)n≧2のとき、an=en!-an1 であることを示せ。
(4)limnk=2n(1)kk! を求めよ。
この動画を見る 

福田の数学〜中央大学2021年理工学部第2問〜3項間の漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
2コインを繰り返し,連続した3回が順に,表→裏→表,あるいは,裏→表→裏,というパターンが出たときにコイン投げを終了する.n3に対し,コインをちょうどn回投げて終了する確率をpnとする.
以下の手順によりpnを求める.コインをn回投げて,「まだ終了していないがn+1回目に表が出たら終了する」または「まだ終了してないがn+1回目に裏が出たら終了する.」という状態にある確率をrnとする.またコインをn回投げて「まだ終了しておらず,n+1回目に表が出ても裏が出ても終了しない」という状態にある確率をsnとする.
このとき,r3=14,s3=,r4=14,s4=である.
ここで,rn+4rn,snを用いて表すと,それぞれrn+1=,sn+1=となる.
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、p2=, p3=
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、次式が成り立つ。
p2=オカキク, p3=ケコサシ
n回目の試行開始時点で袋に人っている玉の個数MnMn=n+であり、この時点で袋に入っていると期待される赤玉の個数RnRn=Mn×Pnと表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数はRn+1=Rn+(1Pn)×となる。したがって、
Pn+1=n+n+×Pn+1n+
が成り立つ。このことから、(n+3)×(n+)×(Pn)がnに依らず一定となる事が分かり、limnPn=と求められる。

2023杏林大学医過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3
数列{an}は、初項a10であり、n=1,2,3,のとき次の漸化式を
満たすものとする。
an+1=n+3n+1{3an+3n+1(n+1)(n+2)} 

(1)a2=     である。

(2)bn=an3n(n+1)(n+2)とおき、数列{bn}の一般項を求めよう。
{bn}の初項b1    である。①の両辺を3n+1(n+2)(n+3)
割ると
bn+1=bn+    (n+    )(n+    )(1    )n+1

を得る。ただし、    <    とする。

したがって

bn+1bn=(    n+        n+    )(1    )n+1
である。

nを2以上の自然数とするとき

k=1n1(    k+        k+    )=1    (n    n+    )

k=1n1(1    )k+1=                (1    )n

が成り立つことを利用すると

bn=n        (n+    )+        (1    )n

が得られる。これはn=1のときも成り立つ。

(3)(2)により、{an}の一般項は
an=    n(n2    )+(n+    )(n+    )    

で与えられる。ただし、    <    とする。
このことから、すべての自然数nについて、
anは整数となることが分かる。

(4)kを自然数とする。a3k,a3k+1,a3k+2で割った余りはそれぞれ
    ,     ,     である。また、{an}の初項から
第2020項までの和を3で割った余りは    である。

2020センター試験過去問
この動画を見る 
PAGE TOP preload imagepreload image