チリの大穴が地球を潰すまで計算した - 質問解決D.B.(データベース)

チリの大穴が地球を潰すまで計算した

問題文全文(内容文):
下記質問の解説動画です
チリの大穴の直径が25mだったのに1週間で2倍になりました。
直径が1週間で2倍になると仮定したときいつ地球は崩壊しますか。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
チリの大穴の直径が25mだったのに1週間で2倍になりました。
直径が1週間で2倍になると仮定したときいつ地球は崩壊しますか。
投稿日:2022.08.14

<関連動画>

名古屋大学2002どっちがでかいか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
①$\ell_n\left(1+\dfrac{1}{x}\right)$ vs $\dfrac{1}{x+1}$
②$\left(1+\dfrac{2002}{2001}\right)^{\frac{2001}{2002}}$ vs $\left(1+\dfrac{2001}{2002}\right)^{\frac{2002}{2001}}$
この動画を見る 

福田のおもしろ数学274〜底が2の対数のガウスの和が2024を超えるのはいつか

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の式を満たす最小の整数 $n$ を求めて下さい。
$[\log_2{1}]+[\log_2{2}]+[\log_2{3}]+\cdots+[\log_2{n}]>2024$
$[x]$ は $x$ を超えない最大の整数を表します。
この動画を見る 

03兵庫県教員採用試験(数学:5-(2) 共有点の個数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}(2)$
直線$y=x$と曲線$y=\log_a x$との
共有点の個数を調べよ.
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}} (2)(\textrm{i})$不等式
$\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}$
を満たす自然数$k$は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})7^{35}$は$\boxed{\ \ セ\ \ }$桁の整数である。

2021上智大学理工学部過去問
この動画を見る 

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 
PAGE TOP