【数Ⅱ】放物線と面積 1/3・1/6・1/12の公式を使いこなせ【定積分をせずに面積を求める】 - 質問解決D.B.(データベース)

【数Ⅱ】放物線と面積 1/3・1/6・1/12の公式を使いこなせ【定積分をせずに面積を求める】

問題文全文(内容文):
$(1)y=x^2-2x+2とy=2x-1で囲われた図形の面積を求めよ.$
$(2)y=x^2-2x+2とy=-x^2+4x+2で囲われた図形の面積を求めよ.$
$(3)y= \vert x^2-1 \vertとx軸,x=0,x=2で囲われた図形の面積を求めよ.$
$(4)放物線C:y=x^2+3x+1上の点(-3,1)における接線と$
$放物線C,y軸で囲われた図形の面積を求めよ.$
$(5)放物線C:y=x^2-x+3と点A(1,-1)からこの放物線に引いた接線で$
$囲われた図形の面積を求めよ.$
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)y=x^2-2x+2とy=2x-1で囲われた図形の面積を求めよ.$
$(2)y=x^2-2x+2とy=-x^2+4x+2で囲われた図形の面積を求めよ.$
$(3)y= \vert x^2-1 \vertとx軸,x=0,x=2で囲われた図形の面積を求めよ.$
$(4)放物線C:y=x^2+3x+1上の点(-3,1)における接線と$
$放物線C,y軸で囲われた図形の面積を求めよ.$
$(5)放物線C:y=x^2-x+3と点A(1,-1)からこの放物線に引いた接線で$
$囲われた図形の面積を求めよ.$
投稿日:2022.09.19

<関連動画>

数学「大学入試良問集」【12−6 放物線と接線で囲まれた面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京都立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$y=x^2$のグラフを$r$とする。
$b \lt a^2$をみたす点$P(a,b)$から$r$へ接線を2本引き、接点を$A,B$とする。
$r$と2本の線分$PA,PB$で囲まれた図形の面積が$\displaystyle \frac{2}{3}$になるような点$P$の軌跡を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$関数$F(x)=\frac{1}{2}+\int_0^{x+1}(|t-1|-1)dt$に対し、
$y=F(x)$で定まる曲線をCとする。
(1)$F(x)$を求めよ。
(2)$C$と$x$軸の共有点のうち、x座標が最小の点をP、最大の点をQ
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 

高専数学 微積I #206 体積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3辺の長さが3,4,5の三角形を底面とする高さが
10の三角錐の体積$V$を求めよ.
この動画を見る 

【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
積分の原理を解説します。
この動画を見る 

福田のおもしろ数学207〜不等式の証明と図形的な意味

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積・体積・長さ・速度#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \geqq b \gt 0,n$ は正の整数とする。
$a^n-b^n \leqq \frac{n}{2}(a-b)(a^{n-1}+b^{n-1})$ であることを証明せよ。
この動画を見る 
PAGE TOP