佐賀大 Japanese university entrance exam questions - 質問解決D.B.(データベース)

佐賀大 Japanese university entrance exam questions

問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
投稿日:2018.08.03

<関連動画>

福田の数学〜一橋大学2025文系第5問〜確率漸化式と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$5$点$A,B,C,D$が

下図のように線分で結ばれている。

点$P_1,P_2,P_3,\cdots $を次のように定めていく。

$P_1$を$A$とする。

正の整数$n$に対して、$P_n$を端点とする線分を

ひとつ無作為にえらび、その線分の$P_n$とは

異なる端点$P_{n+1}$とする。

(1)$P_n$が$A$または$B$である確率$p_n$を求めよ。

(2)$P_n$が$A$または$B$であるとき、

$k=1,2,\cdots ,n$のいずれに対しても$P_k=E$とは

ならない条件付き確率$q_n$を求めよ。

図は動画内参照

$2025$年一橋大学文系過去問題
この動画を見る 

【数B】数列:和の記号∑、シグマの展開! 次の和S[n]を求めよ。S[n]=1/(1+√3)+1/(√3+√5)+1/(√5+√7)+...+1/(√(2n-1)+√(2n+1))

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【数B】次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1+\sqrt3}+\dfrac{1}{\sqrt3+\sqrt5}+\dfrac{1}{\sqrt5+\sqrt7}+...+\dfrac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$
この動画を見る 

大阪大 等比数列 訂正

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
訂正
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?



出典:大阪大学 過去問
この動画を見る 

岡山県立大 バーゼル問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
証明せよ

$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k^2} \leqq 2-\displaystyle \frac{1}{n}$

出典:岡山県立大学 過去問
この動画を見る 

計算しないで答えを出せ!奈良教育大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m, n$は自然数、$m$は定数
$S(n)=1+2+3+...+mn$
$T(n)=S(n)-(1~mn間のmの倍数の和)$
$\displaystyle \lim_{ n \to \infty } \frac {T(n)}{S(n)}$
この動画を見る 
PAGE TOP