問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。\\
動点PはPE=\frac{1}{2}AEを満たしながら\triangle AEDの内部および周上を動くものとし、\\
\angle PED=\thetaとおく。このとき、\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{\ \ ア\ \ }である。また、\overrightarrow{ PB }・\overrightarrow{ PC }を\\
\thetaを用いて表すと\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{\ \ イ\ \ }であり、その最大値は\boxed{\ \ ウ\ \ }である。\\
\overrightarrow{ PC }・\overrightarrow{ PD }が最大となるときの点Pと平面ACDの距離は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2021北里大学医学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。\\
動点PはPE=\frac{1}{2}AEを満たしながら\triangle AEDの内部および周上を動くものとし、\\
\angle PED=\thetaとおく。このとき、\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{\ \ ア\ \ }である。また、\overrightarrow{ PB }・\overrightarrow{ PC }を\\
\thetaを用いて表すと\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{\ \ イ\ \ }であり、その最大値は\boxed{\ \ ウ\ \ }である。\\
\overrightarrow{ PC }・\overrightarrow{ PD }が最大となるときの点Pと平面ACDの距離は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2021北里大学医学部過去問
単元:
#数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。\\
動点PはPE=\frac{1}{2}AEを満たしながら\triangle AEDの内部および周上を動くものとし、\\
\angle PED=\thetaとおく。このとき、\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{\ \ ア\ \ }である。また、\overrightarrow{ PB }・\overrightarrow{ PC }を\\
\thetaを用いて表すと\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{\ \ イ\ \ }であり、その最大値は\boxed{\ \ ウ\ \ }である。\\
\overrightarrow{ PC }・\overrightarrow{ PD }が最大となるときの点Pと平面ACDの距離は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2021北里大学医学部過去問
\begin{eqnarray}
{\Large\boxed{1}} (1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。\\
動点PはPE=\frac{1}{2}AEを満たしながら\triangle AEDの内部および周上を動くものとし、\\
\angle PED=\thetaとおく。このとき、\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{\ \ ア\ \ }である。また、\overrightarrow{ PB }・\overrightarrow{ PC }を\\
\thetaを用いて表すと\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{\ \ イ\ \ }であり、その最大値は\boxed{\ \ ウ\ \ }である。\\
\overrightarrow{ PC }・\overrightarrow{ PD }が最大となるときの点Pと平面ACDの距離は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2021北里大学医学部過去問
投稿日:2022.12.04