福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ - 質問解決D.B.(データベース)

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。\\
動点PはPE=\frac{1}{2}AEを満たしながら\triangle AEDの内部および周上を動くものとし、\\
\angle PED=\thetaとおく。このとき、\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{\ \ ア\ \ }である。また、\overrightarrow{ PB }・\overrightarrow{ PC }を\\
\thetaを用いて表すと\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{\ \ イ\ \ }であり、その最大値は\boxed{\ \ ウ\ \ }である。\\
\overrightarrow{ PC }・\overrightarrow{ PD }が最大となるときの点Pと平面ACDの距離は\boxed{\ \ エ\ \ }である。
\end{eqnarray}

2021北里大学医学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。\\
動点PはPE=\frac{1}{2}AEを満たしながら\triangle AEDの内部および周上を動くものとし、\\
\angle PED=\thetaとおく。このとき、\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{\ \ ア\ \ }である。また、\overrightarrow{ PB }・\overrightarrow{ PC }を\\
\thetaを用いて表すと\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{\ \ イ\ \ }であり、その最大値は\boxed{\ \ ウ\ \ }である。\\
\overrightarrow{ PC }・\overrightarrow{ PD }が最大となるときの点Pと平面ACDの距離は\boxed{\ \ エ\ \ }である。
\end{eqnarray}

2021北里大学医学部過去問
投稿日:2022.12.04

<関連動画>

斜線部の面積を求めよ!2024早稲田佐賀

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照

2024早稲田佐賀高等学校
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART1

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

気付けば一瞬だが、意外と難しいのよ。因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4-7x^2+9$
この動画を見る 

分母の有理化

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{18}{\sqrt 6}$
この動画を見る 

愛知教育大 二次不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
不等式を解け
$a \neq 0,1$
$a(a-1)x^2+(2-3a)x+2 \lt 0$

出典:2018年愛知教育大学 過去問
この動画を見る 
PAGE TOP