うまい方法 - 質問解決D.B.(データベース)

うまい方法

問題文全文(内容文):
$ x^3+2x^2+3x+4=0$の3つの解を$ \alpha,\beta,\delta $とする.
$(\alpha^4-1)(\beta^4-1)(\delta^4-1)$の値を求めよ.
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3+2x^2+3x+4=0$の3つの解を$ \alpha,\beta,\delta $とする.
$(\alpha^4-1)(\beta^4-1)(\delta^4-1)$の値を求めよ.
投稿日:2022.03.30

<関連動画>

06京都府教員採用試験(数学:1-(4) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$

$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$のとき,
$z^{2005}$の値を求めよ.
この動画を見る 

法政大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$8z^3=i$

2020法政(情報科)
この動画を見る 

05高知県教員採用試験(数学:3-(2) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}-(2)$
$z=1+\sqrt3 i$のとき,
$1+z+z^2+z^3+z^4+z^5$の値を求めよ.
この動画を見る 

素数に関する問題 明治学院

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
m,nを1ケタの自然数とする。
(m+n)(n-2)が素数となる(m,n)の組はいくつあるか。

明治学院高等学校
この動画を見る 

順天堂(医)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$w=z+z^2+z^4$

(1)
 ①$w+\bar{ w }$
 ②$w・\bar{ w }$

(2)
 ①$\cos \displaystyle \frac{2}{7}\pi+\cos \displaystyle \frac{4}{7}\pi+\cos \displaystyle \frac{8}{7}\pi$
 ②$\sin \displaystyle \frac{2}{7}\pi+\sin \displaystyle \frac{4}{7}\pi+\sin \displaystyle \frac{8}{7}\pi$


出典:2019年順天堂大学医学部 過去問
この動画を見る 
PAGE TOP