高等学校入学試験予想問題:専修大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:専修大学附属高等学校~全国入試問題解法

問題文全文(内容文):
次の問いに答えよ.
$ \boxed{1}$
(1)
$ (\sqrt8-\sqrt{50})^3 \div \sqrt6+\sqrt{27}=? $

(2)
$ x^2y^2+5xy-24 $を因数分解しなさい.

$ \boxed{2}$
(1)
$ AB=BC=CA=6$cm,$ OA=OB=OC=6\sqrt3$cmの三角錐$OABC$がある.
$ \triangle ABC $を底面としたとき,この三角錐の高さは$ 4\sqrt6$cmである.
$ \triangle OAB $を底面としたとき,この三角錐の高さを求めなさい.

(2)
箱の中に$[1],[2],[3],[4],[5]$の5枚のカードが入っている.
この箱から,同時に2枚のカードを取り出すとき,
取り出したカードに$[3]$のカードがふくまれる確率を求めなさい.
ただし,どのカードを取り出すことも同様に確からしいものとする.

$ \boxed{3}$
$ \angle A=90°$の直角二等辺三角形の内部に,
$ PA=1,PB=\sqrt2,PC=2 $をみたす点$ P $をとり,
点$ P $と辺$ AB,BC,CA $2関して対称な点をそれぞれ$ D,E,F $とする.

(1)
$ DE,EF,FD $の長さをそれぞれ求めなさい.

(2)
五角形$ BECFD $の面積を求めなさい.

(3)
$ AB $の長さを求めなさい.

(4)
面積比$ \triangle PAB:\triangle PBC:\triangle PCA $を求めなさい.

専修大学附属高等学校予想問題
単元: #数学(中学生)#専修大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.
$ \boxed{1}$
(1)
$ (\sqrt8-\sqrt{50})^3 \div \sqrt6+\sqrt{27}=? $

(2)
$ x^2y^2+5xy-24 $を因数分解しなさい.

$ \boxed{2}$
(1)
$ AB=BC=CA=6$cm,$ OA=OB=OC=6\sqrt3$cmの三角錐$OABC$がある.
$ \triangle ABC $を底面としたとき,この三角錐の高さは$ 4\sqrt6$cmである.
$ \triangle OAB $を底面としたとき,この三角錐の高さを求めなさい.

(2)
箱の中に$[1],[2],[3],[4],[5]$の5枚のカードが入っている.
この箱から,同時に2枚のカードを取り出すとき,
取り出したカードに$[3]$のカードがふくまれる確率を求めなさい.
ただし,どのカードを取り出すことも同様に確からしいものとする.

$ \boxed{3}$
$ \angle A=90°$の直角二等辺三角形の内部に,
$ PA=1,PB=\sqrt2,PC=2 $をみたす点$ P $をとり,
点$ P $と辺$ AB,BC,CA $2関して対称な点をそれぞれ$ D,E,F $とする.

(1)
$ DE,EF,FD $の長さをそれぞれ求めなさい.

(2)
五角形$ BECFD $の面積を求めなさい.

(3)
$ AB $の長さを求めなさい.

(4)
面積比$ \triangle PAB:\triangle PBC:\triangle PCA $を求めなさい.

専修大学附属高等学校予想問題
投稿日:2024.01.26

<関連動画>

中1数学「角錐・円錐の体積と表面積」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
角錐・円錐の体積と表面積に関して解説していきます。
この動画を見る 

【正面突破】二次方程式:広島大学付属高等学校~全国入試問題解法【まず解く!】

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#広島大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 広島大学付属高等学校

次の問いに答えよ。
$(x - 2)^2+(x - 1)^2+x − 6 = 0$
上記の方程式を解け。
この動画を見る 

【信じて突き進もう!】連立方程式:ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
正の数$x,y,z$が,$x=y(z+2)=(x+y)z$を満たしているとき
$z$の値を求めよ.また,$\dfrac{y}{x}$の値を求めよ.

ラサール高校過去問
この動画を見る 

【中1 数学】中1-3 正の数・負の数③

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: とある男が授業をしてみた
この動画を見る 

【数学】二次方程式の活用:みんなが嫌いな動く点Pを得意に!

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
教材: #KEYワーク#KEYワーク(数学)中2#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
みんなの苦手な動点Pの問題を克服しよう!
この動画を見る 
PAGE TOP