中学からの極限(基礎編)!~全国入試問題解法 #数学 #極限 #微分積分 #頭の体操 - 質問解決D.B.(データベース)

中学からの極限(基礎編)!~全国入試問題解法 #数学 #極限 #微分積分 #頭の体操

問題文全文(内容文):
$ \displaystyle \lim_{x \to \infty}\dfrac{5x^2+x+4}{x^2+2x+3}$を求めよ.
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to \infty}\dfrac{5x^2+x+4}{x^2+2x+3}$を求めよ.
投稿日:2024.01.14

<関連動画>

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ rを実数とする。次の条件によって定められる数列\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}を考える。\\
a_1=r,\hspace{15pt}a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
b_1=r,\hspace{15pt}b_{n+1}=\frac{b_n}{2}+\frac{7}{12}\hspace{15pt}(n=1,2,3,\ldots)\\
c_1=r,\hspace{15pt}c_{n+1}=\frac{c_n}{2}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
ただし、[x]はxを超えない最大の整数とする。以下の問いに答えよ。\\
(1)\lim_{n \to \infty}b_nと\lim_{n \to \infty}c_nを求めよ。\\
(2)b_n \leqq a_n \leqq c_n\hspace{15pt}(n=1,2,3,\ldots)を示せ。\\
(3)\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}

2022早稲田大学理工学部過去問
この動画を見る 

高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線

$\frac{x^2}{36}-\frac{y^2}{64}=-1$

の焦点の座標を求めなさい。


次の極限値を求めなさい。

$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る 

【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列の極限と関数の極限の違いを解説します
この動画を見る 

福田のわかった数学〜高校3年生理系006〜極限(6)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(6)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log(2n^2+1)}{\log(n+2)}$ を求めよ。
この動画を見る 

自治医科大学

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$

(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$

出典:2017年自治医科大学 過去問
この動画を見る 
PAGE TOP