【基礎と応用のどちらが良いか!】一次関数:和洋国府台女子高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【基礎と応用のどちらが良いか!】一次関数:和洋国府台女子高等学校~全国入試問題解法

問題文全文(内容文):
直線$ y=ax+8 $が2点$ (-2,b),(5,18)$を通るとき$ a,b $の値を求めよ.

和洋国府台女子高校過去問
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)#和洋国府台女子高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
直線$ y=ax+8 $が2点$ (-2,b),(5,18)$を通るとき$ a,b $の値を求めよ.

和洋国府台女子高校過去問
投稿日:2023.08.16

<関連動画>

【高校受験対策】数学-死守23

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.

②$- 2 ^ 2 \times 3$を計算せよ.

③$xy ^ 2 \times 6y \div 3xy$を計算せよ.

④$(x - 7)(x - 4) + 8x$を計算せよ.

⑤1次方程式$x + 4 = 5(2x - 1)$を解け.

⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.

⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.

⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.

⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.

⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.

ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.

⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.

図は動画内参照
この動画を見る 

【中学数学】三角形の合同条件~どこよりも丁寧に~【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角形の合同条件について解説しています。
この動画を見る 

知らなきゃ損!! 2つの放物線と三角形の面積 日大二

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDの面積=?
*図は動画内参照

2021日本大学第二高等学校(改)
この動画を見る 

【数学】中2-5 いろいろな多項式の計算②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【レベル3】
計算せよ。
①$\displaystyle \frac{x-3y}{2}-\displaystyle \frac{5x+2y}{3}$
通分したら②____を使おう!!
③$x+3y-\displaystyle \frac{2x+7y}{3}$
④$\displaystyle \frac{1}{8}(7)(-2y)+\displaystyle \frac{1}{2}(x+2y)$
⑤$\displaystyle \frac{3}{2}(x-3y)-\displaystyle \frac{1}{3}(7x-2y)$
この動画を見る 

佐賀県立高校入試2022年数学3⃣確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学3⃣確率
-----------------
(ア)
この箱から1本のくじをひくとき、2等のあたりくじである確率を求めなさい。

(イ)
この箱から同時に2本のくじをひくとき、2本とも2等のあたりくじである確率を求めなさい。

(ウ)
この箱から同時に2本のくじをひくとき、1本はあたりくじで、もう1本ははずれくじである確率を求めなさい。

(エ)
この箱から同時に2本のくじをひくとき、少なくとも1本はあたりくじである確率を求めなさい。
この動画を見る 
PAGE TOP