円が通過した面積は?文星芸術大附属(栃木県) - 質問解決D.B.(データベース)

円が通過した面積は?文星芸術大附属(栃木県)

問題文全文(内容文):
半径1cmの円が滑らないように△ABCの周りを1周する
円が通過した部分の面積は?
*図は動画内参照
文星芸術大学附属高等学校(改)
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径1cmの円が滑らないように△ABCの周りを1周する
円が通過した部分の面積は?
*図は動画内参照
文星芸術大学附属高等学校(改)
投稿日:2023.08.17

<関連動画>

福田の数学〜中央大学2024理工学部第1問〜3つの関数の大小関係と絶対不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a$ を $1$ 以上の実数、$b$ を実数とし、関数 $f(x), \, g(x), \, h(x)$ を以下で定める。
$\displaystyle f(x)=-|2|x|-1|, \quad g(x)=ax+b, \quad h(x)=e^x$
$(1)$ すべての実数 $x$ に対して $f(x) \leq g(x)$ が成り立つ。$(a, \, b)$ の範囲は、条件 $a \geq 1$ の下では、$b \geq 1$ のとき $a \leq \fbox{ア}$ であり、$\frac{1}{2} \leq b \leq 1$ のとき $a \leq \fbox{イ}$ である。$b < \frac{1}{2}$ のとき条件を満たす $a$ は存在しない。
$(2)$ 実数$p$ に対し、$x=p$ における $y=h(x)$ の接線の方程式は $y=\fbox{ウ}$ である。したがって $a=e^p$ のとき、すべての実数 $x$ に対して $g(x) \leq h(x)$ が成り立つのは $b \leq \fbox{エ}$ のときであり、これは $a$ と $b$ の関係式として $b \leq \fbox{オ}$
$(3)$ すべての実数 $x$ に対し、$f(x) \leq g(x) \leq h(x)$ が成り立つような $(a, \, b)$ 全体のなす領域を $D$ とする。$D$ における $a$ の最大値は $\fbox{カ}$ である。また、$D$ の面積は $\fbox{キ}$ である。
この動画を見る 

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。

2023明治大学理工学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題045〜東北大学2017年度理系第1問〜絶対値の付いた2次関数のグラフと直線の共有点の個数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を実数とする。$y=|x^2-4|$で表される曲線をCとし、
$y=ax+b$で表される直線をlとする。

(1)lが点(-2,0)を通り、lとCがちょうど3つの共有点をもつような
a,bの条件を求めよ。
(2)lとCがちょうど3つの共有点をもつような点(a,b)の軌跡を
ab平面上に図示せよ。

2017東北大学理系過去問
この動画を見る 

一橋大 3次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$整数

$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。

出典:一橋大学 過去問
この動画を見る 

長方形と半円 3通りで解説しました

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形の面積=?
*図は動画内参照
この動画を見る 
PAGE TOP