2023年大阪星光学院中「立体の切断」1 - 質問解決D.B.(データベース)

2023年大阪星光学院中「立体の切断」1

問題文全文(内容文):
2023年大阪星光学院中「立体の切断」1
切断面を想像し、図に書きましょう!!
①IJの延長線と辺EFの延長線の交点をLとし、辺EHの延長線の交点をMとする。
②ALと辺BFの交点がKとなり、AMと辺DHの交点をNとする。
③切断面は、五角形AKIJNとなる。

(1)底面の図形より、LFの辺の長さを求めよ

(2)BKの辺の長さを求めよ
単元: #算数(中学受験)#過去問解説(学校別)#立体図形#体積・表面積・回転体・水量・変化のグラフ#大阪星光学院中学
指導講師: 重吉
問題文全文(内容文):
2023年大阪星光学院中「立体の切断」1
切断面を想像し、図に書きましょう!!
①IJの延長線と辺EFの延長線の交点をLとし、辺EHの延長線の交点をMとする。
②ALと辺BFの交点がKとなり、AMと辺DHの交点をNとする。
③切断面は、五角形AKIJNとなる。

(1)底面の図形より、LFの辺の長さを求めよ

(2)BKの辺の長さを求めよ
投稿日:2023.05.24

<関連動画>

【小4 算数】  小4-②③ 小数のたし算・ひき算

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: とある男が授業をしてみた
問題文全文(内容文):
小4 算数 小数のたし算・ひき算
[解説]
<ポイント>
①筆算で書く時は 小数点をそろえやがれ!
②かくれている0を 見つけやがれ!
以下の問に答えよ
① 0.524 + 3.75
② 5.4 - 2.13
③ 13 - 0.72
※図は動画内参照
この動画を見る 

【中学受験問題に挑戦】10 (”大人”は頭の体操) 折り紙の角度

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
正方形の折り紙を写真のように折った場合、
赤い矢印の部分は何度になるか求めよ。

※写真は動画内参照
この動画を見る 

【小3 算数】  小3-5  時こくと時間のもとめ方③

アイキャッチ画像
単元: #算数(中学受験)#速さ#点の移動・時計算
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。
時間より短いたんいが①____!
①____より 短いたんいが②____!

おぼえちゃおう!

1時間=③__分,1分=④__秒
2時間=⑤__分,2分=⑥__秒
3時間=⑦__分,3分=⑧__秒
4時間=⑨__分,4分=⑩__秒
5時間=⑪__分,5分=⑫__秒
6時間=⑬__分,6分=⑭__秒
⑮1時間30分=$□$ 分
⑯3分15秒=$□$ 秒
⑰ 80分=$□$ 時間$□$分
⑱140秒=$□$分$□$秒
⑲5時間30分=$□$分
⑳100秒$□$分$□$秒
この動画を見る 

知っていれば一瞬!!3通りで解説。智辯学園(奈良)

アイキャッチ画像
単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師: 数学を数楽に
問題文全文(内容文):
三角柱の切断
立体の体積は?
*図は動画内参照

智辯学園高等学校
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第2問〜立方体の切断と位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立体図形#立体切断#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 一辺の長さが2である立方体OADB-CFGEを考える。
$\overrightarrow{OA}$=$\overrightarrow{a}$, $\overrightarrow{OB}$=$\overrightarrow{b}$, $\overrightarrow{OC}$=$\overrightarrow{c}$とおく。辺AFの中点をM、辺BDの中点をNとし、3点O,M,Nを通る平面$\pi$で立方体を切断する。
(1)平面$\pi$は辺AF,BD以外に辺$\boxed{\ \ あ\ \ }$とその両端以外で交わる。
(2)平面$\pi$と辺$\boxed{\ \ あ\ \ }$との交点をPとすると$\overrightarrow{OP}$=$\boxed{\ \ い\ \ } \overrightarrow{a}$+$\boxed{\ \ う\ \ } \overrightarrow{b}$+$\boxed{\ \ え\ \ } \overrightarrow{c}$
(3)断面の面積は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\sqrt{\boxed{\ \ ケ\ \ }}$である。
(4)切断されてできる立体のうち、頂点Aを含むものの体積は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。
(5)平面$\pi$と線分CDとの交点をQとする。
(i)点Qは線分CDを$\boxed{\ \ お\ \ }$に内分する。
(ii)$\overrightarrow{OQ}$=$\boxed{\ \ か\ \ } \overrightarrow{a}$+$\boxed{\ \ き\ \ } \overrightarrow{b}$+$\boxed{\ \ く\ \ } \overrightarrow{c}$である。

$\boxed{\ \ い\ \ }~\boxed{\ \ え\ \ }$, $\boxed{\ \ か\ \ }~\boxed{\ \ く\ \ }$の選択肢
(a)0 (b)1 (c)$\frac{1}{2}$ (d)$\frac{1}{3}$ (e)$\frac{2}{3}$ (f)$\frac{1}{4}$ (g)$\frac{3}{4}$ (h)$\frac{1}{5}$ 
(i)$\frac{2}{5}$ (j)$\frac{3}{5}$ (k)$\frac{4}{5}$ (l)$\frac{1}{6}$ (m)$\frac{5}{6}$

$\boxed{\ \ お\ \ }$の選択肢
(a)1:1 (b)2:1 (c)1:2 (d)3:1 (e)1:3 (f)4:1 (g)3:2 
(h)2:3 (i)1:4 (j)5:1 (k)1:5 
この動画を見る 
PAGE TOP