福田の1.5倍速演習〜合格する重要問題062〜早稲田大学2019年度人間科学部第1問〜球面と平面の交わりの円周上の点 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題062〜早稲田大学2019年度人間科学部第1問〜球面と平面の交わりの円周上の点

問題文全文(内容文):
$\boxed{5}$ 3点A(2,1,7), B(2,5,5), C(5,3,5)を含む平面α上を動く点Pがある。
この点Pは、原点O(0,0,0)との距離OP≦7√2 を満たすように動く。このとき、平面α上
でPが動きうる領域の面積は$\boxed{\ \ ツ\ \ }\pi$ である。また、点Q(16, 10, 6)と
点Pの距離PQの最小値は$\boxed{\ \ テ\ \ }\sqrt{\boxed{\ \ ト\ \ }}$である。

2019早稲田大学人間科学部過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{5}$ 3点A(2,1,7), B(2,5,5), C(5,3,5)を含む平面α上を動く点Pがある。
この点Pは、原点O(0,0,0)との距離OP≦7√2 を満たすように動く。このとき、平面α上
でPが動きうる領域の面積は$\boxed{\ \ ツ\ \ }\pi$ である。また、点Q(16, 10, 6)と
点Pの距離PQの最小値は$\boxed{\ \ テ\ \ }\sqrt{\boxed{\ \ ト\ \ }}$である。

2019早稲田大学人間科学部過去問
投稿日:2023.01.16

<関連動画>

【数B】空間ベクトル:軸/平面に関して対称な点の考え方

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第2問〜空間ベクトルと正八面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような一辺の長さが1の正八面体ABCDEFがある。
2点P,Qはそれぞれ辺AD, BC上にあり
$\overrightarrow{PQ}$$\bot$$\overrightarrow{AD}$かつ$\overrightarrow{PQ}$$\bot$$\overrightarrow{BC}$
を満たすとする。
(1)$\overrightarrow{AD}$と$\overrightarrow{BC}$のなす角は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\pi$である。
(2)|$\overrightarrow{AP}$|=$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$, |$\overrightarrow{BQ}$|=$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$である。
(3)|$\overrightarrow{PQ}$|=$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\sqrt{\boxed{\ \ ナ\ \ }}$である。
(4)平面EPQと直線BFの交点をRとすると|$\overrightarrow{BR}$|=$\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$である。
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第5問〜正四面体と球の位置関係

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 正四面体$OABC$に対し、三角形$ABC$の外心を$M$とし、$M$を中心として点$A,B,C$
を通る球面を$S$とする。また、$S$と辺$OA,OB,OC$との交点のうち、$A,B,C$とは異なる
ものをそれぞれ$D,E,F$とする。さらに、$S$と三角形$OAB$の共通部分として得られる
弧$DE$を考え、その弧を含む円周の中心をGとする。$\overrightarrow{ a }=\overrightarrow{ OA },\ \overrightarrow{ b }=\overrightarrow{ OB },\ \overrightarrow{ c }=\overrightarrow{ OC }$
として、以下の問いに答えよ。
(1)$\overrightarrow{ OD },\ \overrightarrow{ OE },\ \overrightarrow{ OF },\ \overrightarrow{ OG }を\overrightarrow{ a },\ \overrightarrow{ b },\ \overrightarrow{ c }$を用いて表せ。

(2)三角形$OAB$の面積を$S_1$、四角形$ODGE$の面積を$S_2$とするとき、$S_1:S_2$を
できるだけ簡単な整数比により表せ。
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第4問〜空間に浮かぶ四面体の平面による切り口の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の4点O(0,0,0),A(-3,-1,1),B(2,-2,2),C(3,3,3)を頂点とする四面体OABCの、平面$z$=$t$による切り口を$S_t$とする。
(1)$S_t$は1<$t$<2のとき四角形となり、$t$=1および$t$=2のとき三角形となる。
1<$t$1 となるので、点Eはこの六面体の外にある。
(さ),(し),(す)の選択肢:ABC,ABD,ACD,BCD,OAD,OBD,OCD
(4)1<$t$<2に対して、(3)の六面体を平面$z$=$t$で切った切り口の面積を$U(t)$とすると、$U(t)$は$t$=$\boxed{\ \ (た)\ \ }$(ただし1<$\boxed{\ \ (た)\ \ }$<2)において最大値$\boxed{\ \ (ち)\ \ }$をとる。
この動画を見る 
PAGE TOP