福田の数学〜2023年共通テスト速報〜数学IA第3問場合の数 - 質問解決D.B.(データベース)

福田の数学〜2023年共通テスト速報〜数学IA第3問場合の数

問題文全文(内容文):
第3問
番号によって区別された複数の球が、何本かのひもでつながれている。ただし、各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け方(以下、球の塗り方)を考える。
【条件】
・それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。
・1本のひもでつながれた二つの球は異なる色になるようにする。
・同じ色を何回使ってもよく、また使わない色があってもよい。
例えば図A(※動画参照)では、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。
(1)図B(※動画参照)において、球の塗り方は$\boxed{\ \ アイウ\ \ }$通りある。
(2)図C(※動画参照)において、球の塗り方は$\boxed{\ \ エオ\ \ }$通りある。
(3)図D(※動画参照)における球の塗り方のうち、赤をちょうど2回使う塗り方は$\boxed{\ \ カキ\ \ }$通りある。
(4)図E(※動画参照)における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は$\boxed{\ \ クケ\ \ }$通りある。
(5)図Dにおいて、球の塗り方の総数を求める。
そのために、次の構想を立てる。
【構想】
図Dと図Fを比較する。

図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。
図Fにおける球の塗り方は、図Bにおける球の塗り方と同じであるため、全部で$\boxed{\ \ アイウ\ \ }$通りある。そのうち球3と球4が同色になる球の塗り方の総数と一致する図として、後の⓪~④のうち、正しいものは$\boxed{\boxed{\ \ コ\ \ }}$である。したがって、図Dにおける球の塗り方は$\boxed{\ \ サシス\ \ }$通りある。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
(解答群は動画参照)
(6)図Gにおいて、球の塗り方は$\boxed{\ \ セソタチ\ \ }$通りある。

2023共通テスト過去問
単元: #数A#場合の数と確率#場合の数#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第3問
番号によって区別された複数の球が、何本かのひもでつながれている。ただし、各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け方(以下、球の塗り方)を考える。
【条件】
・それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。
・1本のひもでつながれた二つの球は異なる色になるようにする。
・同じ色を何回使ってもよく、また使わない色があってもよい。
例えば図A(※動画参照)では、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。
(1)図B(※動画参照)において、球の塗り方は$\boxed{\ \ アイウ\ \ }$通りある。
(2)図C(※動画参照)において、球の塗り方は$\boxed{\ \ エオ\ \ }$通りある。
(3)図D(※動画参照)における球の塗り方のうち、赤をちょうど2回使う塗り方は$\boxed{\ \ カキ\ \ }$通りある。
(4)図E(※動画参照)における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は$\boxed{\ \ クケ\ \ }$通りある。
(5)図Dにおいて、球の塗り方の総数を求める。
そのために、次の構想を立てる。
【構想】
図Dと図Fを比較する。

図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。
図Fにおける球の塗り方は、図Bにおける球の塗り方と同じであるため、全部で$\boxed{\ \ アイウ\ \ }$通りある。そのうち球3と球4が同色になる球の塗り方の総数と一致する図として、後の⓪~④のうち、正しいものは$\boxed{\boxed{\ \ コ\ \ }}$である。したがって、図Dにおける球の塗り方は$\boxed{\ \ サシス\ \ }$通りある。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
(解答群は動画参照)
(6)図Gにおいて、球の塗り方は$\boxed{\ \ セソタチ\ \ }$通りある。

2023共通テスト過去問
投稿日:2023.01.17

<関連動画>

【数A】【場合の数と確率】重複組合せ4 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを3回投げて出る目の数を順に$a,b,c$とする。次の場合は何通りあるか。
(1) $a < b < c$
(2) $a \leqq b\leqq c$
この動画を見る 

福田の数学〜東京大学2023年理系第2問〜隣どうしにならない順列と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 黒玉3個、赤玉4個、白玉5個が入っている袋から玉を1個ずつ取り出し、取り出した玉を順に横一列に12個すべて並べる。ただし、袋から個々の玉が取り出される確率は等しいものとする。
(1)どの赤玉も隣り合わない確率pを求めよ。
(2)どの赤玉も隣り合わないとき、どの黒玉も隣り合わない条件付き確率qを求めよ。

2023東京大学理系過去問
この動画を見る 

【高校数学】 数A-32 条件付き確率④

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ある製品が不良品である確率は3%であり,この製品の品質検査では,
良品を良品と正しく判定する確率と不良品を正しく判定する確率がともに99%である.

①この製品が品質検査で不良品と判定される確率を求めよう.

②不良品と判定された製品が本当に不良品である確率を求めよう.
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(2)〜順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)赤玉$3$個と白玉$4$個を無作為に$1$列に

並べるとき、

白玉が両端にある確率は$\boxed{イ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る 
PAGE TOP