この答えあっているのか?指数関数と等差数列 自治医科大 - 質問解決D.B.(データベース)

この答えあっているのか?指数関数と等差数列 自治医科大

問題文全文(内容文):
$2^{x+2} , 2^x , 2^4$がこの順で等差数列をなすとき、x=?
(自治医科大学(改))
単元: #数Ⅱ#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{x+2} , 2^x , 2^4$がこの順で等差数列をなすとき、x=?
(自治医科大学(改))
投稿日:2023.05.25

<関連動画>

埼玉大 3次不等式と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#微分法と積分法#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1)(n+1)^3\gt n^3+(n-1)^3$を満たす最大の整数$n$を求めよ.
(2)$n=(1)$の解,$x\gt 0$のとき
$(n+1)^{x+3}\gt n^{x+3}+(n-1)^{x+3}$を証明せよ.

埼玉大過去問
この動画を見る 

指数法則の利用

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=2022$ , $2^y=674$
$3^{\frac{x}{x-y}} =?$
この動画を見る 

【高校数学】 数Ⅱ-127 指数関数①・グラフ編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0,a ≠1$とするとき、$y=a^{x}$は$x$の関数$y=a^{x}$を$a$を①____とする$x$の指数関数という。

◎次の関数のグラフを書こう。

②$y=4^{x}$

③$y=(\displaystyle \frac{1}{4})^x$
この動画を見る 

福田の数学〜北海道大学2025理系第1問〜指数対数の基本性質と数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$\alpha,r$を$\alpha \gt 1,r \gt 1$を満たす実数とする。

数列$\{a_n\}$を$a_1=\alpha$で公比が$r$の等比数列とする。

数列$\{b_n\}$を

$b_n=\log_{a_{n}} (a_{n+1}) (n=1,2,3,\cdots)$で定める。

(1)$b_n$を$n$と$\log_{\alpha}r$を用いて表せ。

$2025$年北海道大学理系過去問題
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$y=x^3-x$により定まる座標平面上の曲線をCとする。
C上の点P$(\alpha,\alpha^3-\alpha)$を通り、
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。
(1)$\alpha$のとりうる値の範囲を求めよ。
(2)Cとlの点P以外の2つの交点のx座標を$\beta,\gamma$とする。ただし$\beta \lt \gamma$とする。
$\beta^2+\beta\gamma+\gamma^2-1\neq 0$ となることを示せ。
(3)(2)の$\beta,\gamma$を用いて、
$u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}$
と定める。このとき、uの取りうる値の範囲を求めよ。

2022東京大学文系過去問
この動画を見る 
PAGE TOP