おうぎ形の面積 数学YouTuberが今流行りの数学YouTuberについて語る - 質問解決D.B.(データベース)

おうぎ形の面積 数学YouTuberが今流行りの数学YouTuberについて語る

問題文全文(内容文):
おうぎ形の面積$\frac{1}{2}lr$
*図は動画内参照
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
おうぎ形の面積$\frac{1}{2}lr$
*図は動画内参照
投稿日:2023.01.29

<関連動画>

円周角 2通りで解説 智辯学園 (奈良)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
何度?
*図は動画内参照
智弁学園高等学校
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問4

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問4. a,bを定数とします。放物線$y=-x^2+4ax+b$ について、次の問いに答えなさい。
(5) 頂点の座標をa,bを用いて表しなさい。この問題は答えだけを書いてください。
(6) 放物線 $y=-x^2$ をx軸方向に1、y軸方向に5だけ平行移動したところ、上の放物線になりました。このとき、a,bの値をそれぞれ求めなさい。
この動画を見る 

頑張れば中学生にも解ける問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a=\sqrt{\dfrac{1!2!3!・・・・・・25!26!}{n}}$が自然数となる最小の自然数$n$である.
そのとき,$a$の末尾に$0$は何個並ぶか.
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\scriptsize$ ${\Large\boxed{4}}$ $A_n=\left\{1,2,\ldots,n\right\}$を、$1$から$n$までの自然数の集合とする。$S$を$A_n$の部分集合(空集合および$A_n$自身も含む)としたとき、$S'$を$S$の要素それぞれに$1$を加えてできた集合とする。また$S''$を$S'$の要素それぞれにさらに$1$を加えてできた集合とする。たとえば、$A_3=\left\{1,2,3\right\}$の部分集合$S=\left\{1,3\right\}$の場合、$S'=\left\{2,4\right\},S''=\left\{3,5\right\}$
$(1)A_4=\left\{1,2,3,4\right\}$の部分集合$S=\left\{1,2,3\right\}$は$S \cup S'=A_4$となる。このように$A_4$の部分集合で$S \cup S'=A_4$となるものは$\left\{1,2,3\right\}$と$\left\{1,\boxed{\ \ ア\ \ }\right\}$の$2つ$である。
$(2)$$A_n$の$部分集合S$で$S \cup S'=A_n$となるような$S$の個数を$a_n$とすると、$(1)$から分かるように$a_4=2$であり$a_5=\boxed{\ \ イウ\ \ },$ $a_6=\boxed{\ \ エオ\ \ },$$a_7=\boxed{\ \ カキ\ \ },$$a_8=\boxed{\ \ クケ\ \ },$$\ldots,a_{16}=\boxed{\ \ コサシ\ \ }$となる。
$(3)$$A_4=\left\{1,2,3,4\right\}$の$部分集合S$で$S\cup S''=A_4$となるものは$S=\left\{1,\boxed{\ \ ス\ \ }\right\}$だけである。
$(4)A_n$の$部分集合S$で$S \cup S''=A_n$となるような$S$の個数を$b_n$とすると、$(3)$から分かるように$b_4=1$であり$ b_5=\boxed{\ \ セソ\ \ },$$b_6=\boxed{\ \ タチ\ \ },$$b_7=\boxed{\ \ ツテ\ \ },$$b_8=\boxed{\ \ トナ\ \ },$$\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }$となる。
2021慶應義塾大学環境情報学部過去問
この動画を見る 

【数Ⅰ】2次関数:放物線とx軸との交点の位置 その1+その2

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅰ 二次関数】
$y=x^2+mx+2$が次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)このグラフとx軸の正の部分が異なる2点で交わる。
(2)グラフとx軸のx<-1の部分が異なる2点で交わる。
この動画を見る 
PAGE TOP