高等学校入試予想問題:宮崎県~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入試予想問題:宮崎県~全国入試問題解法

問題文全文(内容文):
$\boxed{1}$
(1)$27xy\times x^2\div(-9x^2y)$を計算せよ.
(2)$3(x+6y)-2(x+8y)$を計算せよ.
(3)$y$は$x$に比例し,$x=-3$のとき,$y=36$である.
このとき,$y$を$x$の式で表せ.
(4)箱の中に4本のくじ,そのうち3本が当たり.
Aさんが1本引いて戻す.同様にBさんが引く.
2人共,当たりくじをひく確率は?

$\boxed{2}$
$y=x^2$上に$A(2,4)$である.
点$B$は$y$軸上,$y$座標が4より大きい範囲で動く.
$C,D$は,$B$を通り,$x$軸と平行な直線と$y=x^2$の交点である.

(1)点$E$の$x$座標が5となるとき,$\triangle AOE$の面積は?
(2)$CA=AE$となるとき,直線$DE$の傾きは?

$\boxed{3}$

(1)$\triangle AED \backsim \triangle CFD$であることの証明をせよ.
(2)$AE=&,EB=5,BC=2,CF=8$のとき,
①$AC=?$ ②$AD=?$ ③$DF=?$ ④$\Box ABFD$の面積は?
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#確率#2次関数#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$27xy\times x^2\div(-9x^2y)$を計算せよ.
(2)$3(x+6y)-2(x+8y)$を計算せよ.
(3)$y$は$x$に比例し,$x=-3$のとき,$y=36$である.
このとき,$y$を$x$の式で表せ.
(4)箱の中に4本のくじ,そのうち3本が当たり.
Aさんが1本引いて戻す.同様にBさんが引く.
2人共,当たりくじをひく確率は?

$\boxed{2}$
$y=x^2$上に$A(2,4)$である.
点$B$は$y$軸上,$y$座標が4より大きい範囲で動く.
$C,D$は,$B$を通り,$x$軸と平行な直線と$y=x^2$の交点である.

(1)点$E$の$x$座標が5となるとき,$\triangle AOE$の面積は?
(2)$CA=AE$となるとき,直線$DE$の傾きは?

$\boxed{3}$

(1)$\triangle AED \backsim \triangle CFD$であることの証明をせよ.
(2)$AE=&,EB=5,BC=2,CF=8$のとき,
①$AC=?$ ②$AD=?$ ③$DF=?$ ④$\Box ABFD$の面積は?
投稿日:2022.02.19

<関連動画>

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 

【何を問われているか理解しているか?】計算:鎌倉学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の計算をしなさい.
${{2^3-(-2)^3}}\times{-2^5+(-2)^5}$

鎌倉学園高校過去問
この動画を見る 

中2数学「式の変形」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
等式の変形について解説します。
この動画を見る 

【高校受験対策】数学-死守26

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#確率#円#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-3+8$を計算しなさい.

②$2(2x - y) - (x - y)$を計算しなさい.

③$\sqrt{27}-\sqrt{63}$を計算しなさい.

④$(x + 5)(x - 3)$を展開しなさい.

⑤$a(b + 8) - (b + 8)$を因数分解しなさい.

⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.

⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.

⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.

⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.

⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.

図は動画内参照
この動画を見る 

【高校受験対策/数学】死守58

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#空間図形#1次関数#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守58 @397

①$5-8$を計算せよ

②$-4 \times(-3)^2$を計算せよ。

③$(4a^2b+6ab^2)\div 2ab$を計算せよ。

④$(x+y)^2-5xy$を計算せよ。

⑤絶対値が$4$より小さい整数は何個あるか。

⑥2次方程式$x^2+5x+2=0$を解け。

⑦$y$が$x$に反比例し、$x$と$y$の値が下の表のように対応しているとき、表のAに当てはまる数を求めよ。

⑧図1は円すいの展開図で、底面の半径は$5cm$、側面のおうぎ形の半径は$12cm$である。
$\angle x$の大きさを求めなさい。

⑨一の位の数が0でない、2桁の自然数Aがある。
Aの十の位の数とーの位の数を入れかえてできる数をBとする。
Aの十の位の数は一の位の数の2倍であり、BはAより36小さい。このときAの値を求めよ。

⑩右の表はある市における、7月の日ごとの最高気温を度数分布表にまとめたものである。
この表から読み取ることができることがらとして適切なものを、次のア~オからすべて選べ。

ア $32.0℃$以上$34.0℃$未満の階緑の相対度数は$0.16$よりきい。
イ 階級の幅は$12.0℃$である。
ウ 最高気温が$28.0℃$以上の日は、$5$日である。
エ 最頻値(モード)は、$27.0℃$である。
オ $30.0℃$以上$32.0℃$未満の階級の階級値は、$30.0℃$である。
この動画を見る 
PAGE TOP