内接円の半径を求める公式で解けるのか? 慶應志木 - 質問解決D.B.(データベース)

内接円の半径を求める公式で解けるのか? 慶應志木

問題文全文(内容文):
円の半径=?
*図は動画内参照

慶應義塾志木高等学校
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=?
*図は動画内参照

慶應義塾志木高等学校
投稿日:2022.11.30

<関連動画>

【4分でマスター!!】単項式の乗法(指数の法則)を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
単項式の乗法(指数の法則)について解説します。
①$3a×(a^2)^3$
②$2a^2b×(-5ab^2)$
③$(-3x^2y)^2×(-2x^3y^2)^3$
この動画を見る 

【数Ⅰ】【2次関数】2次関数の解の範囲 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
  (1)  x²+2mx+3=0       (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
  (1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
  (1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
  (2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
この動画を見る 

「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第5問〜平面図形、チェバの定理、メネラウスの定理、方べきの定理

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると

$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},$$ \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$

である。したがって

$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$

となる。

4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき

$AB=\boxed{\ \ ケコ\ \ }$

である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり

$\angle AEG=\boxed{\ \ ス\ \ }$

である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$

2020センター試験過去問
この動画を見る 

指数・対数連立不等式 京都府立大

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#2次関数とグラフ#指数関数と対数関数#指数関数#対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a>0,a \neq 1$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^{2x-4}-1<a^{x+1}-a^{x-5} \\
2\log_a(x-2)\geqq \log_a(x-2)+\log_a5
\end{array}
\right.
\end{eqnarray}$
連立不等式を解け.
この動画を見る 
PAGE TOP