【高校受験対策/数学】関数-58 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数-58

問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
投稿日:2022.01.07

<関連動画>

指数の計算!!

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$7^8 = a$ , $8^7 = b$
$56^{56}$をa,bで表せ。
この動画を見る 

因数分解 2022 中大横浜 2022入試問題解説100問解説!!56問目

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$3xy^2 -1005xy - 2022x$

2022中央大学附属横浜高等学校
この動画を見る 

三平方の定理のポイントをまとめてみました。

アイキャッチ画像
単元: #数学(中学生)#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
冬休み前に三平方の定理を習わなかった方は
過去問などを始める前に、この動画でポイントを押さえてください。
この動画を見る 

【イメージできるか…!】法政大学第二高等学校:二次関数~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
定義域$ -6 \leqq x \leqq -2 $である2つの関数
$ y=\dfrac{1}{2}x^2, y=ax+b(a \lt 0)$の値域が一致するような
定数$ a,b $の値を求めなさい.

法政大第二高校過去問
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 
PAGE TOP