これわかる? - 質問解決D.B.(データベース)

これわかる?

問題文全文(内容文):
(1)$4xy^2+6x^2y^2-2xy$
(2)$x^2-x-12$
(3)$6x^2-6x-12$
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$4xy^2+6x^2y^2-2xy$
(2)$x^2-x-12$
(3)$6x^2-6x-12$
投稿日:2024.05.16

<関連動画>

【高校受験対策/数学】死守-93

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守93

①$2-(-5)-4$を計算せよ。

➁$3÷\frac{1}{4}×(-2^2)$を計算せよ。

③等式$3(4x-y)=6$を$y$について解け。

④$\sqrt{12}-\frac{9}{\sqrt{3}}$を計算せよ。

⑤$xy-6x+y-6$を 因数分解せよ。

⑥二次方程式$x^2+5x+2=0$を解け。

⑦右の表は、ある学級の生徒10人について、通学距離を調べて度数分布表に整理したものである。
この表からこの10人の通学距離の平均値を求めると何$km$になるか。

⑧次のア~ウの数の絶対値が、小さい順に左から右に並ぶように記号ア~ウを用いて書け。
ア $-3$
イ $0$
ウ $2$

⑨数字を書いた5枚のカード1、1、2、3、4がある。
この5枚のカードをよくきって、その中からもとにもどさずに続けて2枚を取り出し、
はじめに取り出したカードに書いてある数を$a$、次に取り出したカードに書いてある数を$b$とする。
このとき、$a \geqq b$になる確率を求めよ。
この動画を見る 

素因数分解  教えて下さい たくさんのコメントありがとうございます。

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$7^4-2^4 \times 3^2$を素因数分解せよ。
この動画を見る 

三乗−三乗の因数分解の公式知らなくても解けるよ。慶應義塾高校の小問。

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=3 \\
b= \frac{6}{a}
\end{array}
\right.
\end{eqnarray}
$
のとき$a^2+b^2=?$ $\quad$ $a^3-b^3=?$

慶應義塾高等学校
この動画を見る 

【中学数学】展開と因数分解の最低限の点数稼ぎ~定期テストこれだけ~ 1-7【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$5a+b+(8a^2-4ab)\div 4a$

2⃣
$(x+4y)^2$

3⃣
$(x+3)(x+7)$

4⃣
$(5a+2)(5a-2)$

5⃣
$x^2+9x+14$

6⃣
$2x^2-8x$

7⃣
$36-x^2$

8⃣
$x^2+16x+8$
この動画を見る 

【高校受験対策/数学】死守82

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#資料の活用#1次関数#文字と式#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守82

①$3-(-6)$を計算しなさい。

②$9÷(-\frac{1}{5})+4$を計算しなさい。

③$\sqrt{28}-\sqrt{7}$を計算しなさい。

④下の図のように、半径が$9cm$、中心角が$60°$のおうぎ形$OAB$があります。
このおうぎ形の弧$AB$の長さを求めなさい。
ただし円周率は$\pi$を用いなさい。

⑤右の表は、A中学校の3年生男子80人の立ち幅とびの記録を度数分布表にまと めたものです。
度数が最も多い階級の相対度数を求めなさい。

⑥関数$y=3x$のグラフに平行で、 点$(0,2)$を通る直線の式を求めなさい。

⑦右の図の四角形$ABCD$において、点$B$と点$Dが$重なるように折ったときにできる折り目の線と
辺$AB$、$BC$との交点をそれぞれ$P,Q$とします。
2点$P,Q$を定規とコンパスを使って作図しなさい。
ただし、点を示す記号$P,Q$をかき入れ、作図に用いた線は消さないこと。
この動画を見る 
PAGE TOP