比例式と整数 - 質問解決D.B.(データベース)

比例式と整数

問題文全文(内容文):
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
単元: #数学(中学生)#中1数学#数A#比例・反比例#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
投稿日:2021.12.06

<関連動画>

消費税廃止したら全商品は10%OFFになりますか?

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
消費税廃止したら全商品は10%OFFになるか。以下の方程式を利用して考える。
$x×(1+\displaystyle \frac{10}{100})=1000$
この動画を見る 

【高校受験対策/数学】死守-79

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守79

①$-3-(-7)$を計算しなさい。

②$8a^3b^5÷4a^2b^3$を計算しなさい。

③$x^2-8x+16$を因数分解しなさい。

④$a=\frac{2b-c}{5}$を$c$について解きなさい。

⑤二次方程式$x^2+5x+2=0$を解きなさい。

⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。

⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。

平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。

ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$

⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。

⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。

ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
この動画を見る 

【中1 数学】  1-③③ 方程式の利用⑤ (長イス編)

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 方程式の利用⑤ (長イス編)
以下の問題に答えよ。
①長イスにすわるのに、
4人ずつすわると15人がすわれず、
6人ずつすわると最後のいすにすわるのが1人だけ。
長イスと生徒は?
※図は動画内参照
この動画を見る 

中1数学「数量を表す文字式②(速さ)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第16回数量を表す文字式②(速さ)~

例題
次の数量を表す式を。()の中の単位で、文字式の表し方にしたがって書きなさい。

(1)時速xkmで三時間走ったときの距離(km)

(2)xkmを2時間で歩いたときの速さ(時速、km)

(3)Xmを分速60mで歩いたときの時間(分)

(4)X分で40km進んだときの速さ(時速,km)

(5)秒速2mで20分間に走った距離(m)

(6)分達2mで300km走ったときにかかる時間(分)
この動画を見る 

【高校受験対策】数学-図形18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#円#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
この動画を見る 
PAGE TOP