大阪市立 整数問題 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大阪市立 整数問題 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\sqrt{ n(n+200) }$が自然数となる 自然数$n$
$n^2+200n=a^2$

出典:大阪市立大学 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ n(n+200) }$が自然数となる 自然数$n$
$n^2+200n=a^2$

出典:大阪市立大学 過去問
投稿日:2019.01.09

<関連動画>

【ポイントは2つ!時間は有限!】整数:同志社高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 同志社高等学校

$a〇b=a-b$
$a*b=(a-1)(b-1)$
のように定めるとき

$\lbrace (2x-1) 〇(x+1)\rbrace$
$*\lbrace (3x-4y^2) 〇(3x-5y^2)\rbrace=15$
を満たす正の整数の組(x, y)をすべて求めよ。
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 

ルートと整数 大阪星光学院

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^2-2n-1 < \sqrt{50} <n^2-2n+1 $
を満たす整数nをすべて求めよ。

大阪星光学院高等学校
この動画を見る 

7で割ったあまり 札幌大谷

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^{2021}$を7で割った余りは?

札幌大谷高等学校(改)
この動画を見る 

福田のおもしろ数学296〜フェルマーの最終定理とは何か。与えられた不等式を満たす数列の1との大小関係

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0以上の整数$a, b, c$が$a+b+c=300, a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=6,000,000$を満たしている。そのような$(a, b, c)$の組の個数を求めよ。
この動画を見る 
PAGE TOP