福田の数学〜東京工業大学2023年理系第4問〜非回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2023年理系第4問〜非回転体の体積

問題文全文(内容文):
$\Large\boxed{4}$ xyz空間においてx軸を軸とする半径2の円柱から、|y|<1かつ|z|<1で表される角柱の内部を取り除いたものをAとする。また、Aをx軸のまわりに45°回転してからz軸のまわりに90°回転したものをBとする。AとBの共通部分の体積を求めよ。

2023東京工業大学理系過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ xyz空間においてx軸を軸とする半径2の円柱から、|y|<1かつ|z|<1で表される角柱の内部を取り除いたものをAとする。また、Aをx軸のまわりに45°回転してからz軸のまわりに90°回転したものをBとする。AとBの共通部分の体積を求めよ。

2023東京工業大学理系過去問
投稿日:2023.03.05

<関連動画>

福田の数学〜早稲田大学2024教育学部第4問〜媒介変数表示で表された曲線の対称性と面積体積の計算

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$xy$ 平面上の原点 $\mathrm{O}$ を中心とする単位円を考える。この円周上に点 $\mathrm{P}$ をとり、 $\mathrm{O}$ を極、 $x$ 軸の正の部分を始線とする点 $\mathrm{P}$ の偏角を $\theta$ とする。さらに、偏角が $3 \theta$ となる点 $\mathrm{Q}$ をこの円周上にとる。点 $\mathrm{P}$ を通る $x$ 軸に垂直な直線と点 $\mathrm{Q}$ を通る $y$ 軸に垂直な直線の交点を $\mathrm{R}$ とする。次の問いに答えよ。
$(1)$ $\theta$ が $0$ から $2 \pi$ まで変化するとき、点 $\mathrm{R}$ の軌跡の概形をかけ。
$(2)$ $(1)$ の点 $\mathrm{R}$ の軌跡によって囲まれた部分の面積を求めよ。
$(3)$ $(1)$ の点 $\mathrm{R}$ の軌跡によって囲まれた部分を、 $x$ 軸の周りに $1$ 回転させてできる立体の体積を求めよ。
この動画を見る 

大学入試問題#464「誘導の力は偉大」 神戸大学(2000) #不定積分 #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3(1-x)}$
(1)
$f(x)=\displaystyle \frac{a_1}{x}+\displaystyle \frac{a_2}{x^2}+\displaystyle \frac{a_3}{x^3}+\displaystyle \frac{b}{1-x}$
とおくとき、定数$a_1,a_2,a_3,b$を求めよ

(2)
$\displaystyle \int f(x) dx$

(3)
$\displaystyle \int \displaystyle \frac{dx}{x^P(1-x)}(P=1,2,3,・・・)$

出典:2000年神戸大学 入試問題
この動画を見る 

大学入試問題#521「部分積分もあるかもしれない」 信州大学(2004) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (x+2)\sqrt{ 4-x^2 }\ dx$

出典:2004年信州大学 入試問題
この動画を見る 

大学入試問題#772「初手は好みがでそう」 広島市立大学(2012) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{\sqrt[ 3 ]{ x }} dx$

出典:2012年広島市立大学 入試問題
この動画を見る 

【数Ⅲ-166】積分と面積②(やや複雑編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積②・やや複雑編)

Q
次の曲線と直線で囲まれた部分の面積を求めよ。

①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
この動画を見る 
PAGE TOP