福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定

問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
投稿日:2023.03.08

<関連動画>

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
【問題】
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)について、以下の問いに答えよ。
(2)頂点$A$と辺$BC$の中点を通る直線のベクトル方程式
※(1)は①の動画で解説しています。
この動画を見る 

【高校数学】 数B-15 ベクトルの内積④

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\overrightarrow{ a }=(k.k+1)、\overrightarrow{ b }=(6、-4)$が垂直となるように、kの値を定めよう。

②$\overrightarrow{ a }=(2、-1)$に垂直な単位ベクトルでを求めよう。

③$\overrightarrow{ a }=(\sqrt{ 3 }、1)$と30°の角をなす単位ベクトル$\overrightarrow{ e }$を求めよう。
この動画を見る 

【高校数学】 数B-33 平面上の点の存在位置②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△OABに対し、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S,tが次の条件を満たしながら動くとき、 点Pの存在範囲を図示しよう。

①$s+t \leqq \displaystyle \frac{1}{2},s \geqq 0,t \geqq 0$

②$3s+2t \leqq 3,S \geqq 0,t \geqq 0$
この動画を見る 

大学入試問題#104 一橋大学(2006) ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$|\vec{ a }|=5,|\vec{ b }|=3,|\vec{ c }|=1$
$\vec{ Z }=\vec{ a }+\vec{ b }+\vec{ c }$

(1)$|\vec{ Z }|$の最大値、最小値
(2)$\vec{ a }・\vec{ Z }=20$
をみたすとき
$|\vec{ Z }|$の最大値、最小値を求めよ

出典:2006年一橋大学 入試問題
この動画を見る 

19京都府教員採用試験(数学:高4番 ベクトル・三角関数)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
4⃣$OA=2\sqrt2,OB=4,cos\angle AOB=\frac{\sqrt2}{4}$の△OABにおいて
|$(cost+sint)\overrightarrow{ OA }+(cost-sint)\overrightarrow{ OB }$|
の最大値とそのときのtの値を求めよ。
$(0 \leqq t \leqq \frac{\pi}{4})$
この動画を見る 
PAGE TOP