福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定

問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
投稿日:2023.03.08

<関連動画>

【高校数学】 数B-13 ベクトルの内積②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ 0 }$出ない2つのベクトル$\overrightarrow{ a }・\overrightarrow{ b }$のなす角を$\theta$とすると$\overrightarrow{ a }//\overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$①____または
$\overrightarrow{ a }・\overrightarrow{ b }=$②____$\overrightarrow{ a } \bot \overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$③____

◎右の図の直角三角形について、次の内積を求めよう。

④$\overrightarrow{ OA } ・ \overrightarrow{ OB }$

⑤$\overrightarrow{ OA } ・ \overrightarrow{ AB }$

⑥$\overrightarrow{ AB } ・ \overrightarrow{ OB }$

⑦$\overrightarrow{ BA } ・ \overrightarrow{ OA }$
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDの辺$\overrightarrow{ AB }=\vec{ a }$,$\overrightarrow{ AD }=\vec{ b }$ , $\overrightarrow{ AE }=\vec{ u }$ ,$\overrightarrow{ AF }=\vec{ v }$ とするとき、$\vec{ a }$ ,$\vec{ b }$ を $\vec{ u }$ ,$\vec{ v }$ を用いて表せ。


BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
この動画を見る 

内分の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
(1)$\vec{ P }$を$\vec{ a },\vec{ b }$で表せ

(2)$\overrightarrow{ OQ }=\displaystyle \frac{3\vec{ a }+2\vec{ b }}{9}$のとき点$Q$はどこ?
この動画を見る 

【高校数学】 数B-15 ベクトルの内積④

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\overrightarrow{ a }=(k.k+1)、\overrightarrow{ b }=(6、-4)$が垂直となるように、kの値を定めよう。

②$\overrightarrow{ a }=(2、-1)$に垂直な単位ベクトルでを求めよう。

③$\overrightarrow{ a }=(\sqrt{ 3 }、1)$と30°の角をなす単位ベクトル$\overrightarrow{ e }$を求めよう。
この動画を見る 

【基礎から解説】ベクトルをほかのベクトルで表す(高校数学B)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
平行四辺形$ABCD$において、対角線の交点を$E$、辺$CD$上の点で$CF:FD=2:3$を満たす点を$F$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AD }=\vec{ d },\overrightarrow{ AE }=\vec{ e },\overrightarrow{ AF }=\vec{ f }$とするとき、$\vec{ b },\vec{ d }$を$\vec{ e },\vec{ f }$を用いて表せ。
この動画を見る 
PAGE TOP