【中学数学】2次方程式:図形に関する問題⑥ 動点の問題 点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。 - 質問解決D.B.(データベース)

【中学数学】2次方程式:図形に関する問題⑥ 動点の問題 点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。

問題文全文(内容文):
AB=18cm、BC=12cm、∠B=90°の△ABCがある。点Pは辺AB上を毎秒3cmの速さでAからBまで動き、点Qは辺BC上を毎秒2cmの速さでBからCまで動く。点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。
単元: #数学(中学生)#中3数学#2次方程式
教材: #新中学問題集#新中学問題集(数学)3標準編#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=18cm、BC=12cm、∠B=90°の△ABCがある。点Pは辺AB上を毎秒3cmの速さでAからBまで動き、点Qは辺BC上を毎秒2cmの速さでBからCまで動く。点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。
投稿日:2020.09.25

<関連動画>

大学入試問題#143 東海大学医学部(2020) 因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$(a+b+c)^3-a^3-b^3-c^3$を因数分解せよ。

出典:2020年東海大学医学部 入試問題
この動画を見る 

方針がすぐ思い浮かばなきゃいけない因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(1-c)a^2 +2abc - (1+c)b^2$を因数分解せよ。
(早稲田大学 本庄高等学院)
この動画を見る 

気づけば爽快!!平方根の計算 中央大学附属

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)#中央大学附属高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
${(\sqrt{5}+\sqrt{3})^2}-{\sqrt{2}(\sqrt{10}+\sqrt{6})(\sqrt{5}-\sqrt{3})}+{(\sqrt{5}-\sqrt{3})^2}$
この動画を見る 

途中式をダラダラ書くな。仙台育英(宮城)

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$47^2+48^2+49^2+50^2+51^2+52^2+53^2$

仙台育英学園高等学校
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 
PAGE TOP