単元:
#数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 空間ベクトルに対し、次の関係を定める。\hspace{152pt}\\
\overrightarrow{ a }=(a_1,a_2,a_3)と\overrightarrow{ b }=(b_1,b_2,b_3)が、次の(\textrm{i}),(\textrm{ii}),(\textrm{iii})のいずれかを\\
満たしているとき\overrightarrow{ a }は\overrightarrow{ b }より前であるといい、
\overrightarrow{ a }≺ \overrightarrow{ b }と表す。\\
(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1かつa_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1かつa_2=b_2かつa_3 \lt b_3\ \ \ \\
\\
空間ベクトルの集合P=\left\{(x,y,z) | \ x,y,zは0以上7以下の整数\right\}の要素を\\
前から順に\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }とする。ここで、mはPに含まれる要素の総数を表す。\\
つまり、P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}であり、\\
\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)\\
を満たしている。次の各設問に答えよ。\\
(1)\ \overrightarrow{ p_{67} }を求めよ。\\
(2)集合\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}の要素のうちで最大のものを求めよ。
\end{eqnarray}
2022早稲田大学商学部過去問
この動画を見る