式の値 最後に落とし穴!? 福岡大学 - 質問解決D.B.(データベース)

式の値 最後に落とし穴!? 福岡大学

問題文全文(内容文):
$a>b>0$ , $\frac{a}{b}+\frac{b}{a} = 3$のとき
$\frac{a}{b} - \frac{b}{a} =?$

福岡大学
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a>b>0$ , $\frac{a}{b}+\frac{b}{a} = 3$のとき
$\frac{a}{b} - \frac{b}{a} =?$

福岡大学
投稿日:2022.06.11

<関連動画>

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
この動画を見る 

単なる二次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$iz^2+2z+\sqrt3-2i=0$
この動画を見る 

【数Ⅰ】【図形と計量】0°≦θ≦180°とする。次の不等式を満たすもの値の範囲を求めよ。-1<√3 tanθ <3 (他8問)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。


$\sin\theta > \dfrac{1}{\sqrt{2}}$

$\sin\theta \leq \dfrac{1}{2}$

$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$

$\cos\theta < -\dfrac{1}{\sqrt{2}}$

$0 < \tan\theta \leq 1$

$\tan\theta \geq \sqrt{3}$

$1 < 2\sin\theta \leq \sqrt{3}$

$1 \leq -2\cos\theta < \sqrt{3}$

$-1 < \sqrt{3}\tan\theta < 3$
この動画を見る 

【数A】【数と式】(1) (x-1)(x-3)(x-5)(x-7)+15 (2) (x+1)(x-2)(x+3)(x-6)+8x²

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $(x-1)(x-3)(x-5)(x-7)+15$
(2) $(x+1)(x-2)(x+3)(x-6)+8x^2$
この動画を見る 

2次方程式 3通りで解説!! 2024日比谷高校

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(x-1)^2-4(x-2)^2=0$

2024日比谷高等学校
この動画を見る 
PAGE TOP