京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$

出典:2002年京都大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$

出典:2002年京都大学 過去問
投稿日:2019.04.15

<関連動画>

【数B】数列:漸化式の基本を解説シリーズその3 階差型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=3,a_{n+1}=a_n+2^n$ で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

練習問題2(数検1級1次レベル? 3項間漸化式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=-1,a_2=1$
$a_{n+2}+2a_{n+1}+4a_n=0$
一般項$a_n$を求めよ
この動画を見る 

【高校数学】 数B-80 いろいろな数列の和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$3,5・2,7・2^2,9・2^3・・・$

②$x\neq 1$のとき,$1,3x,5x^2,7x^3,・・・$
この動画を見る 

福田の数学〜一橋大学2025文系第5問〜確率漸化式と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$5$点$A,B,C,D$が

下図のように線分で結ばれている。

点$P_1,P_2,P_3,\cdots $を次のように定めていく。

$P_1$を$A$とする。

正の整数$n$に対して、$P_n$を端点とする線分を

ひとつ無作為にえらび、その線分の$P_n$とは

異なる端点$P_{n+1}$とする。

(1)$P_n$が$A$または$B$である確率$p_n$を求めよ。

(2)$P_n$が$A$または$B$であるとき、

$k=1,2,\cdots ,n$のいずれに対しても$P_k=E$とは

ならない条件付き確率$q_n$を求めよ。

図は動画内参照

$2025$年一橋大学文系過去問題
この動画を見る 

確率、等比数列 巴戦は平等な優勝決定法か?(類)東大、神戸大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
確率、等比数列 巴戦は平等な優勝決定法か?

(類)東大、神戸大
この動画を見る 
PAGE TOP