2次方程式 - 質問解決D.B.(データベース)

2次方程式

問題文全文(内容文):
$x^2=\frac{\sqrt 2-1}{\sqrt 2+1}$のとき
x=?
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2=\frac{\sqrt 2-1}{\sqrt 2+1}$のとき
x=?
投稿日:2022.04.05

<関連動画>

【For you 動画-5】  中3-二次関数

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
4点、$A、B、D、E$は直線上にある。
$AB=BC=6cm$の直角二等辺三角形$ABC$が毎秒$1cm$の速さで上を右に動く。
点$A$が点$D$に重なった瞬間を○秒とする。 このとき、$x$秒後の$2$つの図形が重なる部分の面積を$ycm²$とする。
次の場合について、$y$を$x$の式で表そう!
①$0 \leqq x \leqq 4$
②$4 \leqq x \leqq 6$
③$6 \leqq x \leqq 8$
④グラフを書こう!
※図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-95

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。

⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。

⑥2次方程式$(x-4)(x+2)=3x-2$を解け。

⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。

ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$

⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。

⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
この動画を見る 

因数分解 A 中大横浜 2021

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2(x-1)-x+1$を因数分解せよ。

中央大学附属横浜高等学校
この動画を見る 

【数学】中3-70 三平方・空間図形への利用④(長さが最小編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\angle ABC$=90°、AB=4cm、BC=5cm、AD=6cmの三角柱があり、
BE上に点Pをとる。
AP+PFの長さが最小になるとき、その長さは?

②AB=5cm、AD=3cm、AE=4cmの直立法の頂点Dから、
辺AB、EFを通って頂点Gまで糸をまきつけた。
糸の長さが最小になるとき、その長さは?

※図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-87

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策/数学】死守-87

①$3+(-5)$を計算しなさい。

➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。

③$3(x+y)-2(-x+2y)$を計算しなさい。

④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。

⑤$(3x-y)^2$を展開しなさい。

⑥$a=3$のとき、$a^2+4a$の値を求めなさい。

⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。

⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。

⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
この動画を見る 
PAGE TOP