【中学数学】比例と反比例:変域(何で大小が変わるの?) - 質問解決D.B.(データベース)

【中学数学】比例と反比例:変域(何で大小が変わるの?)

問題文全文(内容文):
$x<2$のとき、$y=-3x$の$y$の取りうる範囲は?
チャプター:

0:00 オープニング
0:06 不等号の復習
0:45 y=-3xの変域
2:20 エンディング

単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x<2$のとき、$y=-3x$の$y$の取りうる範囲は?
投稿日:2021.03.20

<関連動画>

換気せんの面積  名古屋高校

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#円#平面図形#角度と面積#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照

名古屋高等学校
この動画を見る 

高校入試だけど中学生より高校生向けの問題 早大学院(改)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#方程式#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
xについての方程式(a,b,cは整数)
$ax^2+bx+c = 0$について
$b^2-4ac > 0$ならば必ず2つの解をもつ。
○か✖か?

早稲田大学 高等学院(改)
この動画を見る 

中1数学「正の数・負の数①(符号のついた数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
正の数・負の数①(符号のついた数)に関して解説していきます。
この動画を見る 

【中学数学】1次関数:関数決定マスターへの道 一気見用 まとめて見ると、理解も繋がる深まる

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)xはyに比例し、x=3のときy=9となる。yをxの式で表しなさい。
(2)xはyに反比例し、x=3のときy=9となる。yをxの式で表しなさい。
(3)次の条件を満たす1次関数を求めよ。 傾きが2で、x=5のときy=7
(4)次の条件を満たす1次関数を求めよ。 変化の割合が-1で、x=5のときy=7
(5)次の条件を満たす1次関数を求めよ。 切片が3で、x=5のときy=7
(6)次の条件を満たす1次関数を求めよ。 直線y=3xに平行、x=5のときy=7
(7)次の条件を満たす1次関数を求めよ。 直線y=3x+3に平行、x=5のときy=7
(8)次の条件を満たす1次関数を求めよ。 x=3のときy=3、x=5のときy=7
(9)次の条件を満たす1次関数を求めよ。 x=3のときy=3、x=5のときy=7
(10)次の条件を満たす1次関数を求めよ。 直線y=2x-4に平行で、直線y=-2x+4とy軸上で交わる
(11)次の条件を満たす1次関数を求めよ。 直線y=2x+1とy軸上で交わり、直線y=-3x-6とx軸上で交わる
(12)xの変域が-2≦x≦4のとき、yの変域が-9≦y≦3なる1次関数を求めよ。
この動画を見る 

【高校受験対策/数学】死守-80

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#1次関数#確率#2次関数#文字と式#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守80

①$-3+(-4)×5$を計算しなさい。

②$4xy÷8x×6y$を計算しなさい。

③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。

④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$

③下の図で、$\angle x$の大きさを求めなさい。

④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。

⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。

⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。

⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。
この動画を見る 
PAGE TOP